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2. SOLUTIONS TO CHAPTER 2

PROBLEMS

2.1 (a) Label the profs A,B,C and D.

S = {AA,AB,AC,AD,BA,BB,BC,BD,CA,CB,CC,CD,DA,DB,DC,DD}

(b) 1/4

2.2 (a) A sample space is {HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}. All outcomes

are equally probable with probability 1
8 .

(b)

P (two heads) = P ({HHT,HTH, THH}) =
3

8

(c)

P (two consecutive tails) = P ({HTT, TTH}) =
2

8

2.3 (a) A suitable sample space is

S = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5),

(2, 1), (3, 1), (4, 1), (5, 1) , (3, 2) , (4, 2) , (5, 2) , (4, 3) , (5, 3) , (5, 4)}

All outcomes are equally probable with probability 1
20 .

(b)

P (both numbers are odd) = P ({(1, 3), (1, 5), (3, 5), (3, 1), (5, 1) , (5, 3)}) =
6

20

(c)

P (two numbers are consecutive)

= P ({(1, 2), (2, 3), (3, 4), (4, 5), (2, 1), (3, 2) , (4, 3) , (5, 4)}) =
8

20
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2 2. SOLUTIONS TO CHAPTER 2 PROBLEMS

2.4 (a) Let XWYZ represent the outcome that X is in W’s envelope, W is in X’s envelope, Y is in

Y’s envelope and Z is in Z’s envelope. Similarly let ZXYW represent the outcome that Z is in

W’s envelope, X is in X’s envelope, Y is in Y’s envelope and W is in Z’s envelope. With this

notation the set of all possible outcomes are the 4! = 24 possible arrangements of the letters

WXYZ as listed below:

S = {WXY Z,XWY Z, Y WXZ,ZWXY,

WXZY,XWZY, Y WZX,ZWYX,

WYXZ,XYWZ, Y XWZ,ZXWY,

WY ZX,XY ZW,Y XZW,ZXYW,

WZXY,XZWY, Y ZWX,ZY XW,

WZY X,XZYW,Y ZXW,ZYWX}

(b) A = {WXY Z,WXZY,WY XZ,WY ZX,WZXY,WZY X}
B = {XWZY,XY ZW,XZWY, Y WZX, Y ZWX,Y ZXW,ZWXY,ZY XW,ZYWX}
C = {WXZY,WY XZ,WZY X,ZXYW,Y XWZ,XWY Z}
D = ∅
(c)

P (A) =
6

24
, P (B) =

9

24
, P (C) =

6

24
, P (D) = P (∅) = 0

2.5 (a) Let ijk represent the outcome “ball 1 is in box i, ball 2 is in box j and ball 3 is in box k”

where i, j, k = 1, 2, 3. Then

S = {111, 222, 333, 112, 121, 211, 113, 131, 311, 221, 212, 122,

223, 232, 322, 331, 313, 133, 332, 323, 233, 123, 132, 213, 231, 312, 321}

(b) Since A = {222, 333, 223, 232, 322, 332, 323, 233}, P (A) = 8
27 .

Since B = {333}, P (B) = 1
27 .

Since C = {123, 132, 213, 231, 312, 321}, P (C) = 6
27 = 2

9

(c)

P (A) =
(n− 1)3

n3
, P (B) =

(n− 2)3

n3
, P (C) =

n (n− 1) (n− 2)

n3

(d)

P (A) =
(n− 1)k

nk
, P (B) =

(n− 2)k

nk
, P (C) =

n (n− 1) · · · (n− k + 1)

nk

2.6 (a) 0.018 (b) 0.020 (c) 18/78 = 0.231

2.7 (b) 0.978



3. SOLUTIONS TO CHAPTER 3

PROBLEMS

3.1

(a)
(4) 6(5)

7(6)
(b)

(5) 5(4)

7(6)
(c)

(10) 5(4)

7(6)

3.2

(a)
6(4)

64
(b)

4!
2!2!

64
(c)

(
6

2

)
4!

2!2!

64

3.3

(a)
7(5)

75
(b)

7

75
=

1

74
(c)

(7) (6)

(
5

2

)
75

(d) 1− 65

75
(e)

55

75

3.4 (a)

(i)
(n− 1)k

nk
(ii)

n(k)

nk

(b) All nk outcomes are equally likely. That is, all n floors are equally likely to be selected,

and each person’s selection is unrelated to each other person’s selection. Both assumptions are

doubtful since people may be travelling together (e.g. same family) and the floors may not have

equal traffic (e.g. more likely to use the stairs for going up 1 floor than for 10 floors);

3.5 (
4
2

)(
12
4

)(
36
7

)(
52
13

)
3.6

(a)
1

10!
3!3!2!1!1!

=
1

10!
3!3!2!

(b)
8!

3!3!
10!

3!3!2!

(c) 2

(
8!

3!2!
10!

3!3!2!

)
+

8!
3!3!
10!

3!3!2!

(d)
8!

3!2!
10!

3!3!2!

(e)
7!

2!2!
10!

3!3!2!

3



4 3. SOLUTIONS TO CHAPTER 3 PROBLEMS

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

p(
n)

3.7

(a)

(
10
3

)
10(3)

=
1

3!
(b)

(
10
3

)
103

=
1

3!

10(3)

103

3.8 (a) The probability that every person has a different birthday is

365(n)

365n

(b)

p (n) = 1− 365(n)

365n
for n = 1, 2, . . . , 365

(c) The plot of p (n) is given below: p (23) = 0.5073 so there if there are 23 or more people in

the room then the probability at least two people have the same birthday is greater than 0.5.

3.9

(a)
1

n
(b)

2

n

3.10 (a) For nine tickets the sets of 3 tickets which form an arithmetic sequence are

A = {{1, 2, 3} , {2, 3, 4} , {3, 4, 5, } , {4, 5, 6} , {5, 6, 7} , {6, 7, 8} , {7, 8, 9} ,
{1, 3, 5} , {2, 4, 6} , {3, 5, 7} , {4, 6, 8} , {5, 7, 9} ,
{1, 4, 7} , {2, 5, 8} , {3, 6, 9} ,
{1, 5, 9}}

and

P (A) =
7 + 5 + 3 + 1(

9
3

)
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(b) For 2n+ 1 tickets

A = {{1, 2, 3} , {2, 3, 4} , . . . , {2n− 1, 2n, 2n+ 1} ,
{1, 3, 5} , {2, 4, 6} , . . . , {2n− 3, 2n− 1, 2n+ 1} ,
...

{1, n, 2n− 1} , {2, n+ 1, 2n} , {3, n+ 2, 2n+ 1} ,
{1, n+ 1, 2n+ 1}}

and

P (A) =
(2n− 1) + (2n− 3) + · · ·+ 3 + 1(

2n+1
3

) =
1 + 3 + · · ·+ (2n− 3) + (2n− 1)(

2n+1
3

)
=

1 + 2 + 3 + 4 + · · ·+ (2n− 3) + (2n− 2) + (2n− 1)− [2 + 4 + · · ·+ (2n− 2)](
2n+1

3

)
=

1 + 2 + 3 + 4 + · · ·+ (2n− 3) + (2n− 2) + (2n− 1)− 2 [1 + 2 + · · ·+ (n− 1)](
2n+1

3

)
=

2n−1∑
i=1

i− 2
n−1∑
i=1

i(
2n+1

3

) =

(2n−1)(2n)
2 − 2

[
(n−1)n

2

]
(

2n+1
3

) =
n2(

2n+1
3

)
3.11 (a)

(i)
4!

2!2!

104
(ii)

4!

104
(b)

10(4)

104

3.12 (a) (
6
2

)(
19
3

)(
25
5

)
(b) Let N = the unknown number of deer in the area. We know that the proportion of these deer

which have been tagged is 6/N . The proportion of deer in the sample of 5 deer who have been

tagged is 2/5. It seems reasonable to estimate the population proportion 6/N using the sample

proportion 2/5. Solving 6/N = 2/5 gives N = 15 as an estimate of the number of deer in the

area.

3.13

(a)

(
6
3

)(
43
3

)(
49
6

) (b)

(
6
0

)(
43
6

)(
49
6

) (c)

(
6
x

)(
43

6−x
)(

49
6

) for x = 0, 1, . . . , 6

3.14 (a)

5(3) · 263



6 3. SOLUTIONS TO CHAPTER 3 PROBLEMS

(b)

(i)
1

263
(ii)

(
3

2

)
52 × 21

263
(iii)

21× 21× 26

263
(iv) 1− 253

263

(c)

(i)
1

26(3)
(ii)

(
3

2

)
5(2) × 21

26(3)
(iii)

21(2) × 24

26(3)
(iv) 1− 25(3)

26(3)

3.15 (a) The probability of at least one collision is one minus the probability of no collisions or

1− M (n)

Mn

= 1−
(
M

M

)(
M − 1

M

)(
M − 2

M

)
· · ·
(
M − (n− 1)

M

)
= 1−

(
1− 1

M

)(
1− 2

M

)
· · ·
(

1− n− 1

M

)
(b)

1−
(

1− 1

M

)(
1− 2

M

)
· · ·
(

1− n− 1

M

)
≈ 1−

(
e−1/M

)(
e−2/M

)
· · ·
(
e−(n−1)/M

)
= 1− exp

(
− 1

M

n−1∑
i=1

i

)
= 1− e−

1
M
n(n−1)/2

(c) We want

1− M (n)

Mn
≤ 0.5

or approximately

1− e−
1
M
n(n−1)/2 ≤ 0.5

Solving

1− e−
1
M
n(n−1)/2 = 0.5

gives

n (n− 1) = 2M log

(
1

1− 0.5

)
= 2M log 2

or n ≈
√

2M log 2. Therefore n should be less than
√

2M log 2.

(d)
√

2M log 2 = M1/2
√

2 log 2 ≈ 1.18M1/2 ≈M1/2 so if M = 2L, then
√

2M log 2 ≈ 2L/2.

3.16

(a) 1−
(

48
3

)(
50
3

) (b) 1−
(

45
2

)(
47
2

) (c)

(
48
3

)(
50
5

)



7

3.17 Let Q = {heads on quarter} and D = {heads on dime}. Then

P (Both heads at same time)

= P (QD ∪Q DQD ∪Q D Q D QD ∪ · · · )
= (0.6)(0.5) + (0.4)(0.5)(0.6)(0.5) + (0.4)(0.5)(0.4)(0.5)(0.6)(0.5) + · · ·

=
(0.6)(0.5)

1− (0.4)(0.5)
= 3/8 by the Geometric series

3.18 Solution not provided.



4. SOLUTIONS TO CHAPTER 4

PROBLEMS

4.1

0.75, 0.6, 0.65, 0, 1, 0.35, 1

4.2

P (A) = 0.01 P (B) = 0.72 P (C) = (0.9)3 P (D) = (0.5)3 P (E) = (0.5)2

P (B ∩ E) = 0.12 P (B ∪D) = 0.785 P (B ∪D ∪ E) = 0.886

P ((A ∪B) ∩D) = 0.065 P (A ∪ (B ∩D)) = 0.07

4.3

P (A|B) =
P (A ∩B)

P (B)
=
P (A)− P (A ∩B)

1− P (B)

=
P (A)− P (B)P (A|B)

1− P (B)
=

0.3− (0.4) (0.5)

1− 0.4
=

1

6

4.4 (a) (0.7)8 (b) (0.9)8 (c) (0.6)8 (d) 1−
[
(0.7)8 + (0.9)8 − (0.6)8

]
4.5 Since A and B are independent events P (A ∩B) = (0.3) (0.2) = 0.06.

Therefore P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.3 + 0.2− 0.06 = 0.44.

4.6 Since E = A ∪B, F = A ∩B and E and F are independent events we have

P (E ∩ F ) = P ((A ∪B) ∩ (A ∩B)) = P (A ∩B)

and

P (E ∩ F ) = P (E)P (F ) = P (A ∪B)P (A ∩B)

which implies

P (A ∪B)P (A ∩B) = P (A ∩B)

8



9

or

P (A ∩B) [1− P (A ∪B)] = 0

This statement holds only if P (A ∩B) = 0 or P (A ∪B) = 1.

But 1 = P (A ∪B) = 1 − P
(
Ā ∩ B̄

)
which implies P

(
Ā ∩ B̄

)
= 0. Therefore either

P (A ∩B) = 0 or P
(
Ā ∩ B̄

)
= 0 as required.

4.7 A necessary and sufficient condition is

f

F
=
m

M

4.8 Note that A and B are independent events since you are given that A and B̄ are independent

events (see solution to 4.3.3).

P (A ∪B) = 0.15 + (1− 0.3)− (0.15) (1− 0.3)

= 0.745

P (B ∩D|A) =
P (B ∩D ∩A)

P (A)
=
P (B ∩A)

P (A)
since A ⊂ D

=
P (B)P (A)

P (A)
= P (B)

= 0.7

P
(
B ∪ D̄

)
= P

(
B̄ ∩D

)
= 1− P

(
B̄ ∩D

)
= 1− P

(
D|B̄

)
P
(
B̄
)

= 1− (0.8) (0.3)

= 0.76

P
(
C|Ā ∪B

)
=
P
(
C ∩

(
Ā ∪B

))
P
(
Ā ∪B

) =
P
((
C ∩ Ā

)
∪ (C ∩B)

)
P
(
Ā ∪B

)
=
P (C ∪ (C ∩B))

P
(
Ā ∪B

)
=

P (C)

P
(
Ā ∪B

)
=

P (C)

P
(
Ā
)

+ P (B)− P
(
Ā
)
P (B)

=
0.1

0.85 + 0.7− (0.85) (0.7)

= 0.1047
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4.9 Let Ci be the event that component i is working, i = 1, 2, 3, 4. Using Rule 4b and the fact that

the components function independently we have

P (system is working properly)

= P ((C1 ∩ C2) ∪ (C1 ∩ C4) ∪ (C3 ∩ C4))

= P (C1 ∩ C2) + P (C1 ∩ C4) + P (C3 ∩ C4)

− P ((C1 ∩ C2) ∩ (C1 ∩ C4))− P ((C1 ∩ C2) ∩ (C3 ∩ C4))

− P ((C1 ∩ C4) ∩ (C3 ∩ C4)) + P ((C1 ∩ C2) ∩ (C1 ∩ C4) ∩ (C3 ∩ C4))

= P (C1 ∩ C2) + P (C1 ∩ C4) + P (C3 ∩ C4)

− P (C1 ∩ C2 ∩ C4)− P (C1 ∩ C2 ∩ C3 ∩ C4)

− P (C1 ∩ C3 ∩ C4) + P (C1 ∩ C2 ∩ C3 ∩ C4)

= P (C1)P (C2) + P (C1)P (C4) + P (C3)P (C4)

− P (C1)P (C2)P (C4)− P (C1)P (C3)P (C4)

= (0.9) (0.8) + (0.9) (0.6) + (0.7) (0.6)− (0.9) (0.8) (0.6)− (0.9) (0.7) (0.6)

= 0.87

4.10

(a)

(
5

3

)
(0.7)3 (0.3)2 (b) (0.7)4 (0.3)1 (c)

(
4

2

)
(0.7)3 (0.3)2

4.11 (a) Since students answer independently

P (all 3 student get the correct answer) = P (A ∩B ∩ C)

= P (A)P (B)P (C)

= (0.9) (0.7) (0.4)

= 0.252

(b)

P (exactly two students get the correct answer)

= P
(
A ∩B ∩ C̄

)
+ P

(
A ∩ B̄ ∩ C

)
+ P

(
Ā ∩B ∩ C

)
= P (A)P (B)P

(
C̄
)

+ P (A)P
(
B̄
)
P (C) + P

(
Ā
)
P (B)P (C)

= (0.9) (0.7) (0.6) + (0.9) (0.3) (0.4) + (0.1) (0.7) (0.4)

= 0.514
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(c)

P (C is wrong | 2 students correct)

=
P (C is wrong and 2 students correct)

P (2 students correct)

=
P
(
A ∩B ∩ C̄

)
0.514

=
0.378

0.514
= 0.7354

4.12 (a) 0.48

(b) (0.6) (0.5) + (0.48) (0.5) = 0.54

(c) (0.6)(0.5)
0.54 = 5

9

4.13 (a) (0.05) (0.3) + (0.04) (0.6) + (0.02) (0.1) = 0.041

(b) 1− (1− 0.041)10 = 0.342

4.14 (a) 0.1225, 0.175

(b) 0.395

4.15 The probability of C for the first n − 1 trials and then A occurs on the n’th trial is rn−1p. Add

over all n ≥ 1 using Geometric series.

4.16

4.17 (a) The probability all three positions show a flower is(
2

10

)(
6

10

)(
2

10

)
= 0.024

(b) Suppose there are m ≥ 1 flowers on wheel 1, n ≥ 1 flowers on wheel 2, and 10−m−n ≥ 1

on wheel 3. The probability all three positions show a flower is(m
10

)( n
10

)(10−m− n
10

)
=
mn (10−m− n)

103

Let f (n,m) = mn (10−m− n). We want to minimize f (n,m) subject to the restrictionsm ≥
1, n ≥ 1, and 10−m−n ≥ 1. For each value ofm, f (n,m) = mn (10−m− n) is a quadratic

function of n which is minimized for n = 1 or n = 9 −m. Now f (1,m) = f (9−m,m) =

m(9 −m) which is minimized for m = 1 or m = 8. Now f (1, 1) = f (1, 8) = f (8, 1) = 8

and the values of (m,n, 10−m− 9) which minimize the probability all three positions show a

flower are (1, 1, 8), (1, 8, 1), and (8, 1, 1).
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4.18 (a) 0.010 + 0.016 + 0.040 = 0.066

(b) 0.066 + 0.010 = 0.076

(c) 0.185 + 0.683 + 0.016 + 0.04 = 0.924 or 1− 0.076 = 0.924

(d)
0.185 + 0.683

0.066 + 0.185 + 0.683
= 0.929

(e) The events are not independent since

0.010 = P (unemployed ∩ no certificate, diploma or degree)

6= P (unemployed)P (no certificate, diploma or degree) = (0.066) (0.076)

4.19

(a) P (Yes) = P (Yes |B)P (B) + P (Yes |A)P (A)

= p

(
80

100

)
+

(
2

12

)(
20

100

)
=

4p

5
+

1

30

(b) p =
(30x/n)− 1

24

(c) P (B|Yes) =
P (Yes |B)P (B)

P (Yes)
=

4p
5

4p
5 + 1

30

=
24p

1 + 24p

4.20 0.9, 0.061, 0.078

4.21 (a)

P (A) = P (Message contains the word Viagra)

= P (A|Spam)P (Spam) + P (A|Not Spam)P (Not Spam)

= (0.2) (0.5) + (0.001) (0.5) = 0.1005

(b)

P (Spam|A) =
P (A|Spam)P (Spam)

P (A)
=

(0.2) (0.5)

0.1005
= 0.995

P (Not Spam|A) = 1− 0.995 = 0.005

(c)

P (declared as Spam|Spam) = P (A|Spam) = 0.2
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4.22 (a)

P (A1A2A3) = P (A1A2A3|Spam)P (Spam) + P (A1A2A3|Not Spam)P (Not Spam)

= P (A1|Spam)P (A2|Spam)P (A3|Spam)P (Spam)

+ P (A1|Not Spam)P (A2|Not Spam)P (A3|Not Spam)P (Not Spam)

= (0.2) (0.1) (0.1) (0.5) + (0.005) (0.004) (0.005) (0.5)

= 0.00100005

(b)

P (Spam|A1A2A3) =
P (A1A2A3|Spam)P (Spam)

P (A1A2A3)
=

(0.2) (0.1) (0.1) (0.5)

0.00100005
= 0.99995

(c)

P
(
A1A2Ā3

)
= P

(
A1A2Ā3|Spam

)
P (Spam) + P

(
A1A2Ā3|Not Spam

)
P (Not Spam)

= (0.2) (0.1) (0.9) (0.5) + (0.005) (0.004) (0.995) (0.5)

= 0.00900995

P
(
Spam|A1A2Ā3

)
=
P
(
A1A2Ā3|Spam

)
P (Spam)

P
(
A1A2Ā3

) =
(0.2) (0.1) (0.9) (0.5)

0.00900995
= 0.99889

(d)

P (declared as Spam|Spam) = P (A1 ∪A2 ∪A3|Spam)

= P
(
Ā1 ∩ Ā2 ∩ Ā3|Spam

)
= 1− P

(
Ā1 ∩ Ā2 ∩ Ā3|Spam

)
= 1− P

(
Ā1|Spam

)
P
(
Ā2|Spam

)
P
(
Ā3|Spam

)
= 1− (0.8) (0.9) (0.9) = 0.352

which is larger than 0.2.

(e)

P (declared as Spam)

= P (declared as Spam|Spam)P (Spam) + P (declared as Spam|Not Spam)P (Not Spam)

= [1− (0.8) (0.9) (0.9)] (0.5) + [1− (0.995) (0.996) (0.995)] (0.5)

= 0.18296755

P (Spam|declared as Spam) =
P (declared as Spam|Spam)P (Spam)

P (declared as Spam)

=
[1− (0.8) (0.9) (0.9)] (0.5)

0.18296755
= 0.961919
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(f)

P (A1|declared as Spam) =
P (declared as Spam|A1)P (A1)

P (declared as Spam)

=
(1)P (A1)

P (declared as Spam)

=
P (A1|Spam)P (Spam) + P (A1|Not Spam)P (Not Spam)

P (declared as Spam)

=
(0.2) (0.5) + (0.005) (0.5)

0.18296755

= 0.560209

4.23 (a) Note that

P (feature present|F ) = rP
(
feature present|F̄

)
= 0.02r

Therefore

P (F |feature present) =
P (feature present|F )P (F )

P (feature present)

=
P (feature present|F )P (F )

P (feature present|F )P (F ) + P
(
feature present|F̄

)
P
(
F̄
)

=
(0.02r) (0.0005)

(0.02r) (0.0005) + (0.02) (0.9995)

=
r

r + 1999

For r = 10, 30 and 50 we obtain 0.005, 0.0148, 0.0244 respectively.

(b)

P (flagged) = P (feature present) = (0.02r) (0.0005) + (0.02) (0.9995)

If r = 50 we have

P (flagged) = (0.02) (50) (0.0005) + (0.02) (0.9995) = 0.02049

or 2.049% of transactions will be flagged.



5. SOLUTIONS TO CHAPTER 5

PROBLEMS

5.1 (a)

1 =
∑
x∈A

f (x) = 0.1c+ 0.2c+ 0.5c+ c+ 0.2c = 2c so c = 1/2 = 0.5

P (X > 2) = P (X = 3) + P (X = 4) = c+ 0.2c = 1.2c = 0.6

(b)

x 0 1 2 3 4

F (x) = P (X ≤ x) 0.05 0.15 0.4 0.9 1

5.2 (a) 4k2 = 1 so k = 1
2 = 0.5 P (2 < X ≤ 4) = P (X ≤ 4)− P (X ≤ 2) = 0.5− 0.2 = 0.3

(b)

x 1 2 3 4 5 Total

f (x) 0.05 0.15 0.05 0.25 0.5 1

5.3 (a)

P (X = 5) = P (X ≤ 5)− P (X ≤ 4) =
(
1− 2−5

)
−
(
1− 2−4

)
=

1

32

P (X ≥ 5) = 1− P (X ≤ 4) = 1−
(
1− 2−4

)
=

1

16

(b) For x = 1, 2, . . .

f(x) = P (X = x) = P (X ≤ x)− P (X ≤ x− 1)

= F (x)− F (x− 1) =
(
1− 2−x

)
−
(
1− 2−x+1

)
= 2−x (2− 1) = 2−x

15
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5.4 (a) (i)

x 1 2 3 4 5 6 7 8 9 Total

fX(x) 2
10(2)

4
10(2)

6
10(2)

8
10(2)

10
10(2)

12
10(2)

14
10(2)

16
10(2)

18
10(2)

1

or

fX(x) =
2x

10(2)
, x = 1, 2, . . . , 9

(ii)
y 1 2 3 4 5 6 7 8 9

fY (y)
2

10(2)
2

10(2)
4

10(2)
4

10(2)
6

10(2)
6

10(2)
8

10(2)
8

10(2)
10

10(2)

y 10 11 12 13 14 15 16 17 Total

fY (y)
8

10(2)
8

10(2)
6

10(2)
6

10(2)
4

10(2)
4

10(2)
2

10(2)
2

10(2)
1

or

fY (y) =


10−|y−9|

10(2)
, y = 1, 3, 5 . . . , 17

9−|y−9|
10(2)

, y = 2, 4, 6 . . . , 18

(b) (i)

x 0 1 2 3 4 5 6 7 8 9 Total

fX(x) 1
102

3
102

5
102

7
102

9
102

11
102

13
102

15
102

17
102

19
102

1

or

fX(x) =
2x+ 1

102
, x = 0, 1, . . . , 9

(ii)
y 0 1 2 3 4 5 6 7 8

fY (y) 1
102

2
102

3
102

4
102

5
102

6
102

7
102

8
102

9
102

y 9 10 11 12 13 14 15 16 17 18 Total

fY (y) 10
102

9
102

8
102

7
102

6
102

5
102

4
102

3
102

2
102

1
102

1

or

fY (y) =
10− |y − 9|

102
, y = 0, 1, . . . , 18

5.5 (a)
∞∑
x=0

p (1− p)x =
p

1− (1− p) = 1 by the Geometric series
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(b) For x = 0, 1, . . .

P (X < x) = 1− P (X ≥ x) = 1−
∞∑
t=x

p (1− p)t = 1− p (1− p)x

1− (1− p)

= 1− (1− p)x by the Geometric series

(c)

P (X is odd) = P (X = 1) + P (X = 3) + P (X = 5) + · · ·
= p (1− p) + p (1− p)3 + p (1− p)5 + · · ·

=
p (1− p)

1− (1− p)2 by the Geometric series

(d)

P (X is divisible by 3) = P (X = 0) + P (X = 3) + P (X = 6) + · · ·
= p+ p (1− p)3 + p (1− p)6 + · · ·

=
p

1− (1− p)3 by the Geometric series

(e)

P (R = 0) = P (X = 0) + P (X = 4) + P (X = 8) + · · ·
= p+ p (1− p)4 + p (1− p)8 + · · ·

=
p

1− (1− p)4
by the Geometric series

The cases r = 1, 2, 3 can be done similarly to obtain

P (R = r) =
p(1− p)r

1− (1− p)4
, r = 0, 1, 2, 3

5.6 (a) The probability function of X = number of defective chips in sample of twenty is

P (X = x) =

(
50
x

)(
950

20−x
)(

1000
20

) , x = 0, 1, . . . , 20

(b)

P (X ≥ 2) =

20∑
x=2

(
50
x

)(
950

20−x
)(

1000
20

) = 1−
1∑

x=0

(
50
x

)(
950

20−x
)(

1000
20

)
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(c) Since n = 20 draws is small compared to N = 1000 = total number of items this probability

can be approximated using the Binomial approximation

P (X ≥ 2) ≈ 1−
1∑

x=0

(
20

x

)
(0.05)x (0.95)20−x

= 1− (0.95)20 − 20 (0.05) (0.95)19 = 0.264

5.7

(a)
4

15
(b)

(
74
y

)(
76

12−y
)(

150
12

) (c) 0.0176

5.8 Let X = the number of corrupted bits. Then X ∼ Binomial
(
104, 10−5

)
.

(a)

P (X = 0) =

(
104

0

)(
10−5

)0 (
1− 10−5

)104
=
(
1− 10−5

)104
= 0.904837

(b)

P (X ≤ 1) =
(
1− 10−5

)104
+

(
104

1

)(
10−5

)1 (
1− 10−5

)104−1

=
(
1− 10−5

)104
+ 104

(
10−5

) (
1− 10−5

)104−1
= 0.9953216

(c) Since n = 104 is large and p = 10−5 is small, the Poisson approximation to the Binomial

may be used with µ =
(
104
) (

10−5
)

= 0.1.

P (X = 0) ≈
(0.1)0 e−0.1

0!
= e−0.1 = 0.9048374

P (X ≤ 1) ≈ e−0.1 +
(0.1)1 e−0.1

1!
= 1.1e−0.1 = 0.9953212

5.9 (a)

1−
(

500
0

)(
499500

10

)(
500000

10

) = 0.009955209

≈ 1−
(

10

0

)
(0.001)0 (0.999)10

= 1− (0.999)10

≈ 0.009955120

The Binomial approximation to the Hypergeometric is valid since the number of draws, n = 10,

is small relative to the the total number of items, N = 500000.
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(b)

1−
(

500
0

)(
499500
2000

)(
500000
2000

) = 0.865342

≈ 1−
(

2000

0

)
(0.001)0 (0.999)2000 = 1− (0.999)2000 = 0.8648001

≈ 1− e−220

0!
= 1− e−2 = 0.864665

The Binomial approximation to the Hypergeometric is valid since the number of draws,

n = 2000, is still small relative to the the total number of items, N = 500000. The Poisson approxi-

mation to the Binomial is valid since n = 2000 is large, and p = 0.001 is small.

5.10 (a)(
r
x

)(
N−r
n−x

)(
N
n

) =

r(x)

x!
(N−r)(n−x)

(n−x)!

N(n)

n!

=
n!

x! (n− x)!

r(x) (N − r)(n−x)

N (n)
=

(
n

x

)
r(x) (N − r)(n−x)

N (n)

Substituting r = pN we obtain(
r
x

)(
N−r
n−x

)(
N
n

) =

(
n

x

)
(pN)(x) (N − pN)(n−x)

N (n)

=

(
n

x

)
(pN)(x) [(1− p)N ](n−x)

N (x) (N − x)(n−x)

(b) Since

(pN)(x)

N (x)
=

(pN) (pN − 1) (pN − 2) · · · (pN − x+ 1)

N (N − 1) (N − 2) · · · (N − x+ 1)

= px

(
1− 1

pN

1− 1
N

)(
1− 2

pN

1− 2
N

)
· · ·
(

1− x−1
pN

1− x−1
N

)
then

lim
N→∞

(pN)(x)

N (x)
= px

Similarly

[(1− p)N ](n−x)

(N − x)(n−x)
= (1− p)n−x

and thus

lim
N→∞

(
n

x

)
(pN)(x) [(1− p)N ](n−x)

N (x) (N − x)(n−x)
=

(
n

x

)
px (1− p)n−x

(c) This result justifies the Binomial approximation to the Hypergeometric when N gets large

but p = r/N , the proportion of type 1 items, and n, the number of items drawn, are held fixed.
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5.11

P (X = x) =

(
35
x

)(
70
7

)(
105
x+7

) 63

105− (x+ 7)
for x = 0, 1, . . . , 35

5.12 (a) (0.99)20 = 0.8179; 1− (0.99)20 = 0.1821

(b) (0.99)30 = 0.7397

(c)
∞∑
y=96

(
y + 3

3

)
(0.01)4 (0.99)y = 1−

95∑
y=0

(
y + 3

3

)
(0.01)4 (0.99)y

5.13 (a) (
8

9

)15

= 0.1709

(b) (
8

9

)24(1

9

)
= 0.006578

(c) (
8

9

)60

+ 60

(
1

9

)(
8

9

)59

= 0.007249

5.14 (a)

P (X ≥ x) = p (1− p)x+p (1− p)x+1+p (1− p)x+2+· · · = p (1− p)x

1− (1− p) = (1−p)x for x = 0, 1, . . .

(b) X = 0

5.15 (b) Let X = number of requests in a one second interval. Then X ∼ Poisson (2).

P (X ≥ 3) = 1− P (X ≤ 2) = 1−
2∑

x=0

2xe−2

x!

= 1− 5e−2 = 0.3233

(c) Let Y = number of requests in a one minute = 60 second interval. Then Y ∼ Poisson (2× 60).

P (Y > 125) =
∞∑

y=126

(120)y e−120

y!
= 1−

125∑
y=0

(120)y e−120

y!

= 0.3038 (calculated using R)

5.16 0.9989
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5.17

(a) 0.0758 (b) 0.0488 (c)

(
10

y

)
(e−10λ)y(1− e−10λ)10−y (d) λ = 0.12

5.18 (a) 0.0769 (b) 0.2019; 0.4751

5.19 (a) (
7

5

)
(0.8)5 (0.2)2 = 0.2753

(b) (
6

2

)
(0.8)5 (0.2)2 = 0.1966

(c) Let X = number of power failures in one month. Since power failures occur independently

of each other at a uniform rate through the months of the year, with little chance of 2 or more

occurring simultaneously then X ∼ Poisson (µ). To determine µ we note that

0.8 = P (X = 0) =
µ0e−µ

0!
= e−µ or µ = − ln (0.8)

Therefore

P (> 1 power failure in one month) = P (X > 1) = 1− P (X ≤ 1)

= 1− P (X = 0)− P (X = 1)

= 1− 0.8− [− ln (0.8)]1 eln(0.8)

1!
= 0.02149

5.20 (a) Let X = number of spruce budworms in a one hectare plot. Then X ∼ Poisson (λ) since

spruce budworms are distributed through a forest according to a Poisson process so that the

average is λ per hectare.

P (a one hectare plots contains at least k spruce budworms)

= P (X ≥ k) = 1− P (X ≤ k − 1)

= 1−
k−1∑
x=0

λxe−λ

x!

Now

P (at least 1 of n one hectare plots contains at least k spruce budworms)

= 1− P (none of n one hectare plots contain at least k spruce budworms)

= 1−
(
n

0

)[
1−

k−1∑
x=0

λxe−λ

x!

]0 [k−1∑
x=0

λxe−λ

x!

]n

= 1−
[
k−1∑
x=0

λxe−λ

x!

]n
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(b) (Could probably argue for other answers also). Budworms may not be distributed at a uniform

rate over the forest and they may not occur singly.

5.21 (a) 0.2048 (b) 0.0734 (c) 0.428 (d) 0.1404

5.22

(b) p =
(4.5)11 e−4.5

11!
= 0.004264

(c) 1−
10∑
x=0

(4.5)x e−4.5

x!
= 0.006669

(d)

(
20

2

)
p2 (1− p)18 = 0.003199

(e) (i)

(
999

11

)
p12(1− p)988 =

(
999

11

)
p11(1− p)988p = 0.00001244

(ii)

(
999

11

)
p11(1− p)988p ≈

µ11e−µ

11!
p = 0.00001265

On the first 999 attempts we essentially have a Binomial distribution with n = 999 (large),

p = 0.004264 (near 0) so the Poisson approximation can be used with µ = 999 (0.004264) =

4.2601.

5.23

(a) P (no bubbles) =
(0.96)0 e−0.96

0!
= e−0.96

(b) P (more than one bubble) = 1−
[

(0.96)0 e−0.96

0!
+

(0.96)1 e−0.96

1!

]
= 1− 1.96e−0.96 = 0.2495

(c) P (X = x) =

(
n

x

)(
e−0.96

)x (
1− e−0.96

)n−x
; x = 0, 1, . . . , n

(d)
100∑
x=11

(
100

x

)(
1− 1.96e−0.96

)x (
1.96e−0.96

)100−x

= 1−
10∑
x=0

(
100

x

)(
1− 1.96e−0.96

)x (
1.96e−0.96

)100−x

= 0.9999

(e)
(0.8λ)0 e−0.8λ

0!
= e−0.8λ ≥ 0.5 or λ ≤ −1.25 ln (0.5) bubbles per m2

(f) e−0.8λ + (0.8λ) e−0.8λ ≥ 0.95 which must be solved numerically to obtain λ ≈ 0.4442.
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5.24 (a) 0.555 (b) 0.828; 0.965 (c) 0.789; 0.946 (d) n = 1067

5.25 (a)
(
x−1
999

)
(0.3192)1000(0.6808)x−1000

(b) 0.002, 0.051, 0.350, 0.797

(c)
(

3200
y

)
(0.3192)y(0.6808)3200−y; 0.797

5.26 (a) A key will be assigned to a given list (Success) with probability 1/M and not assigned (Fail-

ure) with probability 1 − 1/M . Since the keys are assigned independently, we have a sequence

of n Bernoulli trials. The probability that exactly x of the n keys are assigned to a given list is

given by the Binomial distribution(
n

x

)(
1

M

)x(
1− 1

M

)n−x
for x = 0, 1, . . . , n

(b) If n the number of keys is large and M the size of the hash table is large so that 1/M is small

then we have (
n

x

)(
1

M

)x(
1− 1

M

)n−x
≈
αxe−α

x!
for x = 0, 1, . . .

by the Poisson approximation to the Binomial, where α = n (1/M) = n/M .

(c) If α = 10

P (X ≥ x) ≈ e−10

(
10e

x

)x
Thus

P (X ≥ 15) ≈ e−10

(
10e

15

)15

= 0.3389

and

P (X ≥ 20) ≈ e−10

(
10e

20

)20

= 0.0210

5.27 (b)

1−
2∑

x=0

(0.75)x e−0.75

x!
= 0.04051

(c) e−0.75(2) = 0.2231

(d) e−0.75(3) = 0.1054

(e) 0.75e−0.75 = 0.3543(
10

7

)(
0.75e−0.75

)7 (
1− 0.75e−0.75

)3
= 0.02263
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5.28 (a) Let X3 = number of bits which are flipped in transmission in a group of three bits. Then

X3 ∼ Binomial (3, p). A group of three repeated bits will be decoded correctly if none or one

bit is flipped in transmission. Therefore

P (a group of three repeated bits is decoded correctly)

= P (X3 ≤ 1) = P (X3 = 0) + P (X3 = 1)

=

(
3

0

)
p0 (1− p)3 +

(
3

1

)
p1 (1− p)2

= (1− p)3 + 3p (1− p)2

(b) If no ECC is used then a message of length four is decoded correctly if no bits are flipped in

transmission which occurs with probability (1− p)4
.

(c) If TRC is used then the original message of length four is sent as a string of length twelve.

The message is decoded correctly if each group of three is decoded correctly. Using the result

from (a)

P (original message of length four is decoded correctly)

=
[
(1− p)3 + 3p (1− p)2

]4

(d) See table given in Problem 5.29 (c). For p = 0.2 the probability that the message is not

decoded correctly exceeds 50% if no ECC is used whereas if TRC is used the probability the

message is decoded correctly is approximately 64%. As p decreases in value the probability the

message is decoded correctly increases for both TRC and no ECC as one would expect. For TRC

the probability the message is decoded correctly is nearly 1 for p = 0.01.

(e) Let X5 = number of bits which are flipped in transmission in a group of five bits. Then

X5 ∼ Binomial (5, p). A group of five repeated bits will be decoded correctly if none, one or

two bits are flipped in transmission. Therefore

P (a group of five repeated bits is decoded correctly)

= P (X5 ≤ 2) = P (X5 = 0) + P (X5 = 1) + P (X5 = 2)

=

(
5

0

)
p0 (1− p)5 +

(
5

1

)
p1 (1− p)4 +

(
5

2

)
p2 (1− p)3

= (1− p)5 + 5p (1− p)2 + 10p2 (1− p)3
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(f) Let Xk = number of bits which are flipped in transmission in a group of k bits. Then

Xk ∼ Binomial (k, p). A group of k repeated bits will be decoded correctly if 0, 1, . . . , or

(k − 1) /2 bits are flipped in transmission. Therefore

P (k, p) = P (a group of k repeated bits is decoded correctly)

= P

(
Xk ≤

k − 1

2

)

=

(k−1)/2∑
x=0

(
k

x

)
px (1− p)k−x

k

P (k, p) 3 5 7 9

0.2 0.896 0.9421 0.9667 0.9969

p 0.1 0.972 0.9914 0.9973 0.9999

0.05 0.9928 0.9988 0.9998 1.0000

As the number of repeated bits, k, is increased the probability that a group of k repeated bits is

decoded correctly approaches 1 for each value of p.

5.29 (a) A correctable message is received using Hamming(7,4) if none or one of the seven bits sent

are flipped which occurs with probability(
7

0

)
p0 (1− p)7 +

(
7

1

)
p1 (1− p)6

= (1− p)7 + 7p (1− p)6

(b) See values given in the table in (c).

(c)

p

No. bits

sent
ECC 0.2 0.1 0.05 0.01

4 No ECC 0.4906 0.6561 0.8145 0.9696

12 TRC 0.6445 0.8926 0.9713 0.9988

7 Hamming(7,4) 0.5767 0.8503 0.9556 0.9980

As before, the probabilities increase as the value of p decreases. Of most interest is to com-

pare TRC which requires 12 bits to Hamming(7,4) which requires only 7 bits. Hamming(7,4)

performs almost as well as TRC for fewer bits sent.
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5.30 (a) Assuming that nicks in a chromosome occur at locations according to a Poisson process with

intensity λ and that the distance between endpoint alleles is d then the probability of x nicks is

given by

p(x) =
µxe−µ

x!
for x = 0, 1, 2, . . .

where µ = λd. Therefore

P (even number of nicks) = e−µ +
µ2e−µ

2!
+
µ4e−µ

4!
+ · · ·

= e−µ
∞∑
i=0

µ2i

(2i)!

Consider the Taylor series expansion of ex and e−x

ex = 1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 +

1

5!
x5 + · · ·

e−x = 1− x+
1

2!
x2 − 1

3!
x3 +

1

4!
x4 − 1

5!
x5 + · · ·

If we add these two series term by term and divide by 2 we obtain

ex + e−x

2
= 1 +

1

2!
x2 +

1

4!
x4 + · · ·+ 1

(2i)!
x2i + · · · =

∞∑
i=0

x2i

(2i)!

(The function sinhx = ex+e−x

2 is called the hyperbolic sine function.) Therefore

P (even number of nicks) = e−µ
∞∑
i=0

µ2i

(2i)!
= e−µ

(
eµ + e−µ

2

)
=
e−µ

2

(
eµ + e−µ

)
(b) Now

P (odd number of nicks) =
µ

1!
e−µ +

µ3

3!
e−µ +

µ5

5!
e−µ + · · ·

= e−µ
∞∑
i=0

µ2i+1

(2i+ 1)!

If we subtract the Taylor series of e−x from ex and divide by 2 we obtain

ex − e−x
2

= x+
1

3!
x3 +

1

5!
x5 + · · ·+ 1

(2i+ 1)!
x2i+1 + · · · =

∞∑
i=0

x2i+1

(2i+ 1)!

(The function coshx = ex−e−x
2 is called the hyperbolic cosine function.) Therefore

P (odd number of nicks) = e−µ
∞∑
i=0

µ2i+1

(2i+ 1)!
= e−µ

(
eµ − e−µ

2

)
=
e−µ

2

(
eµ − e−µ

)
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(c) The ratio P (even number of nicks)/P (odd number of nicks) is given by

P (even number of nicks)

P (odd number of nicks)
=
eµ + e−µ

eµ − e−µ =
e2µ + 1

e2µ − 1

=
e2λd + 1

e2λd − 1

Here is a graph of the function

e2x + 1

e2x − 1

which decreases as a function of x = λd. Note that the ratio is always greater than 1, and that it

approaches 1 as the distance d between the endpoint alleles increases.

Figure 2.1: Plot of ratio for Problem 30



7. SOLUTIONS TO CHAPTER 7

PROBLEMS

7.1 E (X) = 4, E
(
X2
)

= 17.6, V ar (X) = E
(
X2
)
− [E (X)]2 = 17.6− 16 = 1.6

E (X) = 2.5, E
(
X2
)

= 7.2, V ar (X) = E
(
X2
)
− [E (X)]2 = 7.2− 6.25 = 0.95

7.2 E (X) = 2.775, E
(
X2
)

= 10.275,

V ar (X) = E
(
X2
)
− [E (X)]2 = 10.275− (2.775)2 = 2.574375

7.3 (a) The person wins $2x if x tosses are needed for x = 1, 2, 3, 4, 5 but loses $256 if x > 5. Note

that

P (X > 5) =
1

26
+

1

27
+

1

28
+ · · · = 1/26

1− 1
2

=
1

25

Let W = winnings. Then the probability function for W is

w 2 22 23 24 25 −256 Total

P (W = w) 1
2

(
1
2

)2
= 1

22
1
23

1
24

1
25

1
25

1

Therefore

E (W ) = 2

(
1

2

)
+ 22

(
1

22

)
+ 23

(
1

23

)
+ 24

(
1

24

)
+ 25

(
1

25

)
+ (−256)

(
1

25

)
= 5− 8 = −3 dollars

(b)

E
(
W 2
)

= (2)2

(
1

2

)
+
(
22
)2( 1

22

)
+
(
23
)2( 1

23

)
+
(
24
)2( 1

24

)
+
(
25
)2( 1

25

)
+ (−256)2

(
1

25

)
= 2110

and

V ar (W ) = E
(
W 2
)
− [E (W )]2 = 2110− (−3)2 = 2101 (dollars)2

28
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7.4 (a) Let Y = number of cups drunk by Yasmin and let Z = number of cups drunk by Zack. Then

Y = 2X2 and Z = |2X − 1|.

E (Y ) = E
(
2X2

)
=

5∑
x=0

(2x2)P (X = x) = 2
5∑

x=0
x2P (X = x)

= 2[(0)2(0.09) + (1)2(0.10) + (2)2(0.25)

+ (3)2(0.40) + (4)2(0.15) + (5)2(0.01)] = 14.7

On average Yasmin drinks 14.7 cups of coffee per week.

E (Z) = E (|2X − 1|) =

5∑
x=0

|2x− 1|P (X = x)

= |2(0)− 1|(0.09) + |2(1)− 1|(0.10) + |2(2)− 1|(0.25)

+ |2(3)− 1|(0.40) + |2(4)− 1|(0.15) + |2(5)− 1|(0.01)

= 4.08

On average Zack drinks 4.08 cups of coffee per week.

(b) Since

E
(
Y 2
)

= E
[(

2X2
)2]

= E
(
4X4

)
= 4

5∑
x=0

x4P (X = x)

= 4[(0)4(0.09) + (1)4(0.10) + (2)4(0.25)

+ (3)4(0.40) + (4)4(0.15) + (5)4(0.01)] = 324.6

therefore

V ar (Y ) = E
(
Y 2
)
− [E (Y )]2 = 324.6− (14.7)2 = 108.51

Since

E
(
Z2
)

= E
(
|2X − 1|2

)
=

5∑
x=0

|2x− 1|2P (X = x)

= |2(0)− 1|2(0.09) + |2(1)− 1|2(0.10) + |2(2)− 1|2(0.25)

+ |2(3)− 1|2(0.40) + |2(4)− 1|2(0.15) + |2(5)− 1|2(0.01)

= 20.6

therefore

V ar (Z) = E
(
Z2
)
− [E (Z)]2 = 20.6− (4.08)2 = 3.9536
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7.5 (a) Using the results of Problem 3.6.2 we have

E (X) =
∞∑
x=1

xp (1− p)x = p (1− p)
∞∑
x=1

x (1− p)x−1

= p (1− p) 1

[1− (1− p)]2
=

1− p
p

E [X (X − 1)] =
∞∑
x=2

x (x− 1) p (1− p)x

= p (1− p)2
∞∑
x=1

x (x− 1) (1− p)x−2

= p (1− p)2 2

[1− (1− p)]3
=

2 (1− p)2

p2

and

V ar (X) = E [X (X − 1)] + E (X)− [E (X)]2

=
2 (1− p)2

p2
+

1− p
p
−
(

1− p
p

)2

=

(
1− p
p

)2

+
p (1− p)

p2

=
(1− p)
p2

(1− p+ p)

=
1− p
p2

(b) Let Y = the number of trials to obtain the first success. Then Y = X + 1 and therefore

E (Y ) = E (X + 1) = E (X) + 1 =
1− p
p

+ 1 =
1

p

7.6 Let X be the number of tests applied to an individual.

P (X = 1) = P (individual tests negative)

= P (tests negative|D)P (D) + P
(
tests negative|D̄

)
P
(
D̄
)

= 0 + (0.95) (0.98) = 0.931

P (X = 2) = P (individual tests positive)

= P (tests positive|D)P (D) + P
(
tests positive|D̄

)
P
(
D̄
)

= 1− 0.931 = 0.069

Then the expected cost per person is $10(0.931) + $110(0.069) = $16.90.
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7.7 (a) For test B, P (test positive) = 0.02 so the expected number of cases detected among 150

person is 150 (0.02) = 3 cases.

(b) For test A, P (test positive) = (0.8) (0.02) + (0.05) (0.98) = 0.065 so the expected cost is

2000 + 100 (2000) (0.065) = 15000 and the expected number of cases detected is

2000 (0.02) (0.8) = 32 cases.

7.8 (a) The possible number of tests done is 1 if all k people are negative or k + 1 tests if at least

one person is positive.

x 1 k + 1 Total

P (X = x) (1− p)k 1− (1− p)k 1

so

E (X) = (1) (1− p)k + (k + 1)
[
1− (1− p)k

]
= k + 1− k (1− p)k

(b)

Expected number of tests for
n

k
groups =

n

k

[
k + 1− k (1− p)k

]
= n+

n

k
− n(1− p)k

which gives 1.01n, 0.249n, 0.196n for k = 1, 5, 10.

7.9 (a) If you bet $1 on 10 consecutive plays then your expected net winnings equals

10

[
(1)

(
18

37

)
+ (−1)

(
19

37

)]
= 10

(
−1

37

)
= −10

37
dollars

If you bet $10 on a single play then your expected net winnings equals

(10)

(
18

37

)
+ (−10)

(
19

37

)
= −10

37
dollars

(b) If you bet $1 on 10 consecutive plays then the probability you make a profit is the probability

you win 6 or more times which equals

10∑
x=6

(
10

x

)(
18

37

)x(19

37

)10−x
= 0.3442

If you bet $10 on a single play then the probability you make a profit is 18
37 = 0.4865
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7.10 Expected winnings per dollar spent is equal to

(20)

(
2

10

)(
6

10

)(
2

10

)
+ (10)

(
4

10

)(
3

10

)(
3

10

)
+ (5)

(
4

10

)(
1

10

)(
5

10

)
= 0.94 dollars

7.11 (a)

Expected net profit =

n∑
i=1

(ai − 1) pi + (−1) pn+1 =

n∑
i=1

aipi −
n+1∑
i=1

pi =

n∑
i=1

aipi − 1

(b)

Expected net profit = 3 (0.1) + 5 (0.04 + 0.04 + 0.04)− 1 = −0.10 dollars

(c) The expected profit is

−0.05 =
n∑
i=1
dbipi + (−1) pn+1 =

n∑
i=1
d

(
1

pi

)
pi + (−1) pn+1 = dn− pn+1

so

d = (pn+1 − 0.05) /n

If n = 10 and pn+1 = 0.7 then d = 0.065.

7.12 (a) Let Xi be the winnings when attempting Question i first and let i be the event Question i is

answered correctly, i = A,B.

E (XA) =
∑
x∈S

xP (XA = x)

= (100 + 200)P (A ∩B) + (100)P (A ∩B) + (0)P (A)

= (300)P (A)P (B) + (100)P (A)P (B)

= (300)(0.8)(0.6) + (100)(0.8)(0.4)

= 176

E (XB) =
∑
x∈S

xP (XB = x)

= (100 + 200)P (B ∩A) + (200)P (B ∩A) + (0)P (B)

= (300)P (B)P (A) + (200)P (B)P (A)

= (300)(0.8)(0.6) + (200)(0.6)(0.2)

= 168

Therefore the expected winnings are greatest when attempting Question A first.
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(b)

E (XA) = (300)P (A ∩B) + (100)P (A ∩B) + (−50)P (A)

= (300)(0.8)(0.6) + (100)(0.8)(0.4)− (50)(0.2)

= 166

E (XB) = (300)P (B ∩A) + (200)P (B∩A) + (−50)P (B)

= (300)(0.6)(0.8) + (200)(0.6)(0.2)− (50)(0.4)

= 148

Question A should still be attempted first to maximize expected winnings.

7.13 Let N = net profit. Then N = 59.5n − 25 − 200X2 where X ∼ Binomial (n, 0.05) which

implies E (X) = n (0.05) and V ar (X) = n (0.05) (0.95). Also since

V ar (X) = E
(
X2
)
− [E (X)]2 we know E

(
X2
)

= V ar (X) + [E (X)]2. The expected net

profit is

E (N) = E
(
59.5n− 25− 200X2

)
= 59.5n− 25− 200E

(
X2
)

= 59.5n− 25− 200
{
V ar (X) + [E (X)]2

}
= 50n− 0.5n2 − 25

which is maximized for n = 50.

7.14 (a) Let N = the number of trick-or-treaters that arrive in the first half hour. Since arrivals follow

a Poisson process then N ∼ Poisson (6).

P (5 ≤ N ≤ 7) = P (N = 5) + P (N = 6) + P (N = 7)

=
e−6(6)5

5!
+
e−6(6)6

6!
+
e−6(6)7

7!

= e−6 1296

7

= 0.45892

(b) LetM = the number of trick-or-treaters that arrive per 3.5 hours. ThereforeM ∼ Poisson(µ)

where µ = 3.5× 12 = 42. Since E (M) = 42, the expected number of trick-or-treaters over the

whole evening is 42.

(c) Using M as (b), we note that

P (M = x)

P (M = x+ 1)
=

e−42 42x

x!

e−42 42x+1

(x+1)!

=
42x

42x+1

(x+ 1)!

x!
=
x+ 1

42
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This is < 1 if x < 41 and > 1 if x > 41. It follows that outcomes become more likely as x

increases to a maximum of 41 and then less likely thereafter. The two outcomes, X = 41 and

X = 42 are both equally likely (and occur with probability e−42 4241

41! = e−42 4242

42! ≈ 0.0614).

(d) Since V ar(M) = µ, the variance of the number of trick-or-treaters arriving over the whole

evening is 42.

7.15 LetX = the number of weeks the stock price increases in value by $1, thenX ∼ Binomial
(
13, 1

2

)
.

The price of the stock in 13 weeks is S = 50 +X − (13−X) = 37 + 2X . The return from the

option is R = max(37 + 2X − 55, 0) = max (2X − 18, 0). Therefore

E (R) = 0 +
13∑

x=10

(2x− 18)

(
13

x

)(
1

2

)x(
1− 1

2

)13−x

=

[
2

(
13

10

)
+ 4

(
13

11

)
+ 6

(
13

12

)
+ 8

(
13

13

)](
1

2

)13

=
485

4096

7.16 Let X = time to display the information.

(a) Without cache, X = 50 + 70 + 50 = 170 only so the expected time to display is 170.

(b) With a cache, X = 10 or 10 + 50 + 70 + 50 = 180 (since the cache is always searched

first) with probabilities 0.2 and 0.8 respectively, so the expected time to display is 10(0.2) +

180(0.8) = 146 ms.

(c) Let p be the probability of a cache hit. Solving 170 = 10p + 180(1 − p) gives p = 0.059.

Therefore even with only around a 6% probability of a cache hit it is still worthwhile to use a

cache!



8. SOLUTIONS TO CHAPTER 8

PROBLEMS

8.1 (a) Solving

1 =

∞∫
−∞

f(x)dx = 0 + k

1∫
−1

(
1− x2

)
dx+ 0 = k

1∫
−1

(
1− x2

)
dx

gives k = 3/4.

F (x) =


0 x ≤ −1

3
4

x∫
−1

(
1− u2

)
du = 1

4

(
2 + 3x− x3

)
− 1 < x < 1

1 x ≥ 1

(b) We need to find c such that

0.95 = P (−c ≤ X ≤ c)

=
1

4

[(
2 + 3c− c3

)
−
(
2− 3c+ c3

)]
=

1

4

(
6c− 2c3

)
=

1

2

(
3c− c3

)
or

c3 − 3c+ 1.9 = 0

This cubic equation must be solved numerically which gives c = 0.811.

(c) µ = E (X) = 0 since the p.d.f. is symmetric about x = 0.

σ2 = V ar (X) = E
(
X2
)
− 02 = E

(
X2
)

= 0.75

1∫
−1

x2
(
1− x2

)
dx = 0.2

σ = sd (X) =
√

0.2

35
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(d) For 0 < y < 1

G (y) = P (Y ≤ y) = P
(
X2 ≤ y

)
= P (−√y ≤ X ≤ √y) = F (

√
y)− F (−√y)

g (y) =
d

dy
G (y) = f (

√
y)

d

dy

√
y − f (−√y)

d

dy
(−√y) = f (

√
y)

1

2
√
y

+ f (−√y)
1

2
√
y

= 2f (
√
y)

1

2
√
y

since f (−√y) = f (
√
y) by symmetry of f (x)

=
3

4
(1− y)

1
√
y

=
3

4

(
y−1/2 − y1/2

)
Therefore

g (y) =

{
3
4

(
y−1/2 − y1/2

)
0 < y < 1

0 otherwise

8.2 (a) The area under the p.d.f. and above the x-axis consists of two triangles with

area = 1
2

(
1
2

)
(2) + 1

2

(
1
2

)
(2) = 1 and therefore

∞∫
−∞

f(x)dx = 1.

(b)

P (0.25 ≤ X ≤ 0.8) =

0.8∫
0.25

f(x)dx =

0.5∫
0.25

4xdx+

0.8∫
0.5

4 (1− x) dx = 0.375 + 0.42 = 0.795

(c) Since the p.d.f. is symmetric about the line x = 1/2, the median is equal to 1/2.

To find the 10th percentile we need to find the value c such that 0.1 = F (c). Since 0.5 = F (1/2)

we know that c must lie between 0 and 1/2. Therefore c is the solution to

0.1 =

c∫
0

4xdx = 2x2|c0 = 2c2

which gives c =
√

0.05 ≈ 0.2236.

(d) Since the p.d.f. is symmetric about the line x = 1/2, the mean is µ = E (X) = 1/2.

E
(
X2
)

=

∞∫
−∞

x2f(x)dx = 0 +

1/2∫
0

4x3dx+

1∫
1/2

4x2 (1− x) dx+ 0 =
7

24

V ar (X) = E
(
X2
)
− [E (X)]2 =

7

24
−
(

1

2

)2

=
1

24

(e) For −1 < y < 1

G (y) = P (Y ≤ y) = P (2 (X − 1/2) ≤ y) = P

(
X ≤ y + 1

2

)
= F

(
y + 1

2

)
g (y) =

d

dy
G (y) = f

(
y + 1

2

)
d

dy

(
y + 1

2

)
= f

(
y + 1

2

)(
1

2

)
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Therefore

g (y) =


y + 1 − 1 < y ≤ 0

1− y 0 < y < 1

0 otherwise

(f) For 0 < z < 1

H (z) = P (Z ≤ z) = P
(
X3 ≤ z

)
= P

(
X ≤ z1/3

)
= F

(
z1/3

)
since P (X < 0) = 0. Therefore

h (z) =
d

dz
H (z) = f

(
z1/3

) d

dz
z1/3 = f

(
z1/3

) 1

3z2/3

=


4z−1/3/3 0 < z ≤ (0.5)3

4
(
z−2/3 − z−1/3

)
/3 (0.5)3 < z < 1

0 otherwise

8.3 For 0 < y < 1

G (y) = P (Y ≤ y) = P

(
X + 10

20
≤ y
)

= P (X ≤ 20y − 10)

= F (20y − 10)

g (y) =
d

dy
G (y) = f (20y − 10)

d

dy
(20y − 10) =

(
1

20

)
(20) = 1

which is the probability density function of a U (0, 1) random variable.

8.4

P (|X − µ| ≤ 2σ) = P (µ− 2σ ≤ X ≤ µ+ 2σ) = 2P (µ ≤ X ≤ µ+ 2σ) by symmetry

= 2 [P (X ≤ µ+ 2σ)− P (X ≤ µ)]

= 2 [P (X ≤ µ+ 2σ)− 0.5] since P (X ≤ µ) = P (X > µ) = 0.5

= 2P (X ≤ µ+ 2σ)− 1

8.5 (a) For females

P (X > 80|X > 30) =
P (X > 80, X > 30)

P (X > 30)
=
P (X > 80)

P (X > 30)
=

0.704

0.996
= 0.707

P (X > 90|X > 30) =
P (X > 90)

P (X > 30)
=

0.396

0.996
= 0.398
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For males

P (X > 80|X > 30) =
P (X > 80)

P (X > 30)
=

0.603

0.989
= 0.610

P (X > 90|X > 30) =
P (X > 90)

P (X > 30)
=

0.273

0.989
= 0.276

(b)

P (X > 90) = P (X > 90|Female)P (Female) + P (X > 90|Male)P (Male)

= (0.396) (0.49) + (0.273) (0.51) = 0.333

8.6 (a) f (x) is a probability density function for θ > −1, since for θ > −1, f(x) ≥ 0 for all x ∈ <
and

∞∫
−∞

f(x)dx =

1∫
0

(θ + 1)xθdx = xθ+1|10 = 1

(b)

P (X ≤ 0.5) =

0.5∫
0

(θ + 1)xθdx = xθ+1|0.50 = (0.5)θ+1

(c) For k = 1, 2, . . .

E
(
Xk
)

=

∞∫
−∞

xkf(x)dx =

1∫
0

xk (θ + 1)xθdx = (θ + 1)

1∫
0

xk+θdx

=
θ + 1

θ + k + 1
xθ+k+1|10 =

θ + 1

θ + k + 1

Therefore

E (X) =
θ + 1

θ + 2
, E

(
X2
)

=
θ + 1

θ + 3
and

V ar (X) = E
(
X2
)
− [E (X)]2 =

θ + 1

θ + 3
−
(
θ + 1

θ + 2

)2

=
θ + 1

(θ + 2)2 (θ + 3)

(d) For y > 1

G (y) = P (Y ≤ y) = P

(
1

X
≤ y
)

= P

(
X >

1

y

)
= 1− P

(
X ≤ 1

y

)
= 1− F

(
1

y

)
since F (x) = P (X ≤ x)

g (y) =
d

dy
G (y) =

d

dy

[
1− F

(
1

y

)]
= −f

(
1

y

)
d

dy

(
1

y

)
= f

(
1

y

)(
1

y2

)
=
θ + 1

yθ+2
for y > 1



39

Therefore

g (y) =

{
θ+1
yθ+2

y > 1

0 otherwise

8.7 (a)

1 =

∞∫
−∞

f(x)dx = 0 + k

∞∫
0

xe−x
2/θdx = k lim

b→∞

[
−θ

2
e−x

2/θ|b0
]

= k

(
θ

2

)[
1− lim

b→∞
e−b

2/θ

]
= k

(
θ

2

)
and therefore k =

2

θ

F (x) =

 0 x ≤ 0
x∫
0

2u
θ e
−u2/θdu = 1− e−x2/θ x > 0

(b)

E (X) =

∞∫
−∞

xf(x)dx = 0 +

∞∫
0

x
2x

θ
e−x

2/θdx =

∞∫
0

2x2

θ
e−x

2/θdx let y =
x2

θ
, dy =

2x

θ
dx

=

∞∫
0

θ1/2y1/2e−ydy = θ1/2

∞∫
0

y3/2−1e−ydy = θ1/2Γ

(
3

2

)
= θ1/2

(
1

2

)
Γ

(
1

2

)
=

√
θπ

2

E
(
X2
)

=

∞∫
−∞

x2f(x)dx = 0 +

∞∫
0

x2 2x

θ
e−x

2/θdx =

∞∫
0

2x3

θ
e−x

2/θdx let y =
x2

θ
, dy =

2x

θ
dx

=

∞∫
0

θye−ydy = θ

∞∫
0

y2−1e−ydy = θΓ (2) = θ (1) = θ

V ar (X) = E
(
X2
)
− [E (X)]2 = θ −

(√
θπ

2

)2

= θ

(
4− π

4

)
(c) For y > 0

G (y) = P (Y ≤ y) = P

(
X2

θ
≤ y
)

= P
(
X ≤

√
θy
)

since P (X ≤ 0) = 0

= F
(√

θy
)

g (y) =
d

dy
G (y) = f

(√
θy
) d

dy

√
θy = f

(√
θy
) √θ

2
√
y

=
2
√
θy

θ
e−y
√
θ

2
√
y

= e−y
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which is the probability density funciton of an Exponential (1) random variable. Therefore

Y = X2/θ ∼ Exponential (1).

8.8 Since X is the diameter of the sphere

Y =

(
4π

3

)(
X

2

)3

=
π

6
X3 and X =

(
6

π
Y

)1/3

Since X ∼ U (0.6, 1)

f (x) =
1

1− 0.6
=

5

2
for 0.6 < x < 1

The range of Y is
π

6
(0.6)3 < y <

π

6
(1)3

or 0.036π ≤ y ≤ π

6
Therefore for 0.036π ≤ y ≤ π

6

G (y) = P (Y ≤ y) = P
(π

6
X3 ≤ y

)
= P

(
X ≤

(
6

π
y

)1/3
)

= F

((
6

π
y

)1/3
)

and

g(y) =
d

dy
G (y) =

d

dy

[
F

((
6

π
y

)1/3
)]

= f

((
6

π
y

)1/3
)

d

dy

(
6

π
y

)1/3

=
5

2

(
6

π

) 1
3
(

1

3

)
y−2/3

=

(
5

6

)(
6

π

) 1
3

y−
2
3

Therefore

g (y) =

{ (
5
6

) (
6
π

) 1
3 y−

2
3 0.036π ≤ y ≤ π

6

0 otherwise

8.9 (a) Let X = magnitude of earthquake. Then X ∼ Exponential (2.5). The probability an

earthquake has a magnitude greater than 5 is P (X > 5) = e−5/2.5 = e−2.

(b) The probability that among 3 earthquakes there are none with a magnitude greater than 5 is(
3
0

) (
e−2
)0

(1− e−2)3 = (1− e−2)3.

(c) By the memoryless property of the Exponential distribution

P (X > 5|X > 4) = P (X > 1) = e−1/2.5 = e−0.4
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8.10 Let X = lifetime of this type of light bulb in hours. Then X ∼ Exponential (1000).

(a) E (X) = 1000 hours and sd (X) =
√

(1000)2 = 1000 hours.

(b) Let Y = lifetime of this type of lightbulb in days. Then Y = X/24 and

E (Y ) = E

(
X

24

)
=

1

24
E (X) =

1

24
(1000)

=
125

3
days

V ar (Y ) = V ar

(
X

24

)
=

(
1

24

)2

V ar (X)

=

(
1

24

)2

(1000)2 =

(
1000

24

)2

=

(
125

3

)2

sd (Y ) =

√(
125

3

)2

=
125

3
days

(c) Solving

0.5 = P (X > m) = e−m/1000

gives

m = 1000 ln 2 ≈ 693.14 hours

8.11 (a) Let X = waiting time until the next accident. Since accidents occur according to a Poisson

process with rate λ = 0.5 accidents per day, then X has an Exponential distribution with mean

θ = 1/λ = 1/0.5 = 2 days. Since E (Y ) = θ if Y ∼ Exponential (θ) then E (X) = 2 days is

the expected waiting time until the next accident.

(b)

P (waiting time is less than 12 hours)

= P (waiting time is less than 0.5 days)

= P (X < 0.5) = 1− e−0.5/2 = 1− e−0.25

(c) By the memoryless property of the Exponential distribution

P (X > 1|X > 0.5) = P (X > 0.5) = e−0.25
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8.12 (a) Let X be the lifetime kilometer-age of the car. Then X has an Exponential distribution with

mean 20 thousand kilometers. By the memoryless property of the Exponential distribution,

P (X > 20 + 10|X > 10) = P (X > 20) = e−20/20 = e−1 = 0.3679

(b) IfX = the lifetime kilometer-age of the car (in thousands of kilometers) is aUniform(0, 40)

random variable then

P (X > 20 + 10|X > 10) =
P (X > 30, X > 10)

P (X > 10)
=
P (X > 30)

P (X > 10)

=

40∫
30

1
40dx

40∫
10

1
40dx

=
1

3

8.13 Let X = waiting time in days between server crashes. Since on average there are three server

crashes per day, X ∼ Exponential (1/3).

(a) Since 8 hours = 1/3 day, the probability that the waiting time between two consecutive

crashes is greater than 8 hours is

P

(
X >

1

3

)
=

∞∫
1/3

3e−3xdx = e−3(1/3) = e−1 = 0.368

(b) By the memoryless property of the Exponential distribution

P

(
X >

1

24
+

1

3
|X >

1

3

)
= P

(
X >

1

24

)
= e−3(1/24) = 0.882

since one hour = 1/24 days.

(c) Let N = number of crashes in a day. Then N ∼ Poisson (3) and the probability that there

are fewer than three crashes in a day is

P (N < 3) = P (N ≤ 2) =

2∑
n=0

3ne−3

n!
= 0.423
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8.14 (a) Clearly, f(x) ≥ 0 for any x ∈ R. Since

∞∫
−∞

f(x)dx = 0 +

∞∫
0

xα−1

Γ(α)βα
e
− x
β dx

=
1

Γ(α)βα

∫ ∞
0

xα−1e
− x
β dx let

x

β
= y

=
1

Γ(α)βα

∫ ∞
0

(βy)α−1e−yd(βy)

=
1

Γ(α)

∫ ∞
0

yα−1e−ydy = 1

therefore f is a legitimate probability density function.

(b)

E(X) =

∫ ∞
−∞

xf(x)dx =

∫ ∞
0

x
xα−1

Γ(α)βα
e
− x
β dx =

Γ(α+ 1)

Γ(α)
β = αβ

Similarly,

E(X2) =

∫ ∞
−∞

x2f(x)dx =

∫ ∞
0

x2 xα−1

Γ(α)βα
e
− x
β dx =

Γ(α+ 2)

Γ(α)
β2 = α(α+ 1)β2

Hence,

V ar(X) = E
(
X2
)
− [E (X)]2 = αβ2

(c) For α = 1, we have Γ(1) = 1. Then,

f(x) =

{
1
β e
− x
β x ≥ 0

0 otherwise

This is the probability density function of an Exponential (β) random variable.

8.15 0.06681, 0.24173, 0.38292, 0.2417, 0.06681

8.16 Since X ∼ N (10, 16), then to find the 20th percentile we need to find c such that

P (X ≤ c) = 0.2 or P
(
Z ≤ c−10

4

)
= 0.2 where Z ∼ N (0, 1).

From the inverse Normal table we have P (Z ≤ 0.8416) = 0.8 which implies

P (Z ≤ −0.8416) = 0.2 which gives c−10
4 = −0.8416 or c = 6.6336.

To find the 40th percentile we need to find c such that P (X ≤ c) = 0.4 or P
(
Z ≤ c−10

4

)
= 0.4.

From the inverse Normal table we have P (Z ≤ 0.2533) = 0.6 which implies

P (Z ≤ −0.2533) = 0.4 which gives c−10
4 = −0.2533 or c = 8.9868.
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To find the 60th percentile we need to find c such that P (X ≤ c) = 0.6 or P
(
Z ≤ c−10

4

)
= 0.6.

From the inverse Normal table we have P (Z ≤ 0.2533) = 0.6 which gives
c−10

4 = 0.2533 or c = 11.0132.

To find the 80th percentile we need to find c such that P (X ≤ c) = 0.8 or P
(
Z ≤ c−10

4

)
= 0.8.

From the inverse Normal table we have P (Z ≤ 0.8416) = 0.8 which gives
c−10

4 = 0.8416 or c = 13.3664.

8.17 (a) Since X ∼ N
(

2, (0.01)2
)

P (X < 2) = P

(
X − 2

0.01
<

2− 2

0.01

)
= P (Z < 0) = 0.5 where Z ∼ N(0, 1)

(b) Find c such that

0.9 = P (|X − µ| ≤ c) = P

(
|X − µ|

0.01
≤ c

0.01

)
Since P (|Z| ≤ 1.6449) = 0.9 then c = (0.01) (1.6449) = 0.016449.

(c) X ∼ N
(
µ, (0.01)2

)
. We want µ such that P (X < 2) < 0.01. Since

P (X < 2) = P

(
Z <

2− µ
0.01

)
where Z ∼ N(0, 1)

and P (Z < −2.3263) = 0.01, therefore

2− µ
0.01

< −2.3263 or µ > 2.023263

8.18 Let X be the bolt’s diameter. Then X ∼ N(1.2, (0.005)2).

P (X > 1.21 or X < 1.19) = P (X > 1.21) + P (X < 1.19)

= P

(
X − 1.2

0.005
>

1.21− 1.2

0.005

)
+ P

(
X − 1.2

0.005
<

1.19− 1.2

0.005

)
= P (Z > 2) + P (Z < −2) where Z ∼ N(0, 1)

= 1− P (Z < 2) + [1− P (Z < 2)]

= 2 [1− P (Z < 2)] = 2 [1− F (2)] = 2(1− 0.97725) = 0.0455

8.19 The average wholesale price per egg is

5P

(
Z <

37− 40

2

)
+ 6P

(
37− 40

2
< Z <

42− 40

2

)
+ 7P

(
Z >

42− 40

2

)
= 5P (Z < −1.5) + 6P (−1.5 < Z < 1) + 7P (Z > 1) where Z ∼ N(0, 1)

= 5(1− 0.93319) + 6(0.84134 + 0.93319− 1) + 7(1− 0.84134)

= 6.092 cents
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8.20 Let X = lifetime of computer chip. Then X ∼ N
(

5× 106,
(
5× 105

)2)
.

(a) Since

P
(
X ≤ 6× 106

)
= P

(
Z ≤ 6× 106 − 5× 106

5× 105

)
where Z ∼ N(0, 1)

= P (Z ≤ 2) = 0.97725

the proportion of computer chips that last less than 6× 106 hours is 0.97725.

(b) Since

P
(
X > 4× 106

)
= P

(
Z >

4× 106 − 5× 106

5× 105

)
where Z ∼ N(0, 1)

= P (Z > −2) = P (Z < 2) = 0.97725

the proportion of computer chips that last longer than 4× 106 hours is 0.97725.

(c) Let Y = the lifetime of improved computer chip. Then Y ∼ N
(
µnew,

(
5× 105

)2)
. The

manufacturer wants

0.95 ≤ P
(
Y > 4.5× 106

)
= P

(
Z >

4.5× 106 − µnew
5× 105

)
where Z ∼ N(0, 1)

Since P (Z ≤ 1.6449) = 0.95, P (Z > −1.6449) = 0.95 the manufacturer should choose µnew such

that
4.5× 106 − µnew

5× 105
≤ −1.6449

or

µnew ≥ 4.5× 106 + 1.6449× 5× 105 = 4.5× 106 + 0.82249× 106 = 5.32245× 106

Therefore the new mean should be at least 5.32245× 106.

8.21 (a) Let X = temperature of CPU. Since X ∼ N
(
60, 52

)
P (X > 75) = P

(
Z >

75− 60

5

)
= P (Z > 3) = 1−0.99865 = 0.00135 where Z ∼ N(0, 1)

(b) Since P (Z < 1.2816) = 0.9 where Z ∼ N(0, 1), therefore

c− 60

5
= 1.2816 or c = 66.408
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(c) Since P (Z > 2.3263) = 0.01 where Z ∼ N(0, 1), therefore

95− µnew
5

= 2.3263 or µnew = 83.3685

8.22 (a)

P (false negative) = P (X < d) if X ∼ N
(
µ1, σ

2
1

)
= P (X < 5) if X ∼ N

(
10, (6)2

)
= P

(
Z <

5− 10

6

)
where Z ∼ N (0, 1)

≈ P (Z < −0.83) = 1− P (Z < 0.83) = 1− 0.79673 = 0.20327

P (false positive) = P (X ≥ d) if X ∼ N
(
µ0, σ

2
0

)
= P (X ≥ 5) if X ∼ N

(
0, (4)2

)
= P

(
Z ≥ 5− 0

4

)
where Z ∼ N (0, 1)

= 1− P (Z < 1.25) = 1− 0.89435 = 0.10565

(b)

P (false negative) = P (X < 5) if X ∼ N
(

10, (3)2
)

= P

(
Z <

5− 10

3

)
where Z ∼ N (0, 1)

≈ P (Z < −1.67) = 1− P (Z < 1.67) = 1− 0.95254 = 0.04746

P (false positive) = P (X ≥ 5) if X ∼ N
(

0, (3)2
)

= P

(
Z ≥ 5− 0

3

)
where Z ∼ N (0, 1)

= 1− P (Z < 1.67) = 1− 0.95254 = 0.04746

8.23 (a) False positive probabilities are P (Z > d/3) = 0.0475, 0.092, 0.023 for Z ∼ N (0, 1) and

d = 5, 4, 6 in (i), (ii), (iii).

False negative probabilities are P (Z < (d− 10) /3) = 0.0475, 0.023, 0.092 for Z ∼ N (0, 1)

and d = 5, 4, 6 in (i), (ii), (iii).

(b) The factors are the security (proportion of spam in email) and proportion of legitimate mes-

sages that are filtered out.
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8.24 (a) Sn is the time we need to wait until the n’th hit occurs.

(b) If Sn ≤ t, then the n’th hit has happened sometime in (0, t]. Therefore, Xt ≥ n, because

Xt counts the number of hits in (0, t]. Conversely, if Xt ≥ n, it means that the number of hits

occurred up to time t is at least n. Therefore, the n’th hit has happened sometime in (0, t], that

is, Sn ≤ t.

(c) We know that Xt ∼ Poisson(λt). Therefore,

P (Sn ≤ t) = P (Xt ≥ n) = 1− P (Xt < n)

= 1−
n−1∑
j=0

P (Xt = j)

= 1−
n−1∑
j=0

e−λt(λt)j

j!

(d) The probability density function of Sn is given by

fSn(t) =
d

dt
P (Sn ≤ t)

= −
n−1∑
j=0

[
−λe−λt (λt)

j

j!
+ jλ(λt)j−1 e

−λt

j!

]

= λe−λt

1 +

n−1∑
j=1

[
(λt)j

j!
− (λt)j−1

(j − 1)!

]
= λe−λt

{
1 +

[
(λt)n−1

(n− 1)!
− (λt)0

0!

]}
=
λntn−1e−λt

(n− 1)!

This is for t > 0. For t < 0, we simply have fSn(t) = 0. Therefore,

fSn(t) =

{
λntn−1e−λt

(n−1)! if t > 0

0 if t < 0

Noting that Γ(n) = (n− 1)!, we have

fSn(t) =

{
λntn−1e−λt

Γ(n) if t > 0

0 if t < 0

which is a Gamma random variable with parameters α = n and β = 1/λ.
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8.25 (a) To show that E (X) does not exist we need to show the improper integral

∞∫
−∞

αx

π(α2 + x2)
dx

does not converge. By a change of variable

∞∫
−∞

x

α2 + x2
dx =

∞∫
−∞

x

1 + x2
dx

For this integral to converge the integral

∞∫
1

x

1 + x2
dx

must converge. Since for x ≥ 1

x

1 + x2
≥ x

x2 + x2
=

1

2

(
1

x

)
and

1

2

∞∫
1

1

x
dx diverges

therefore by the Comparison Test for Improper Integrals the integral
∞∫
1

x
1+x2

dx does not converge

and thus E (X) does not exist. It follows that the variance V ar (X) = E
[
(X − µ)2

]
does not

exist since E (X) = µ does not exit.

(b) Let Y = X−1. Show that Y has a Cauchy distribution with parameter α−1. Since

P (Y ≤ y) = P (X−1 ≤ y) and X can be positive or negative, we have two cases:

Case 1: Let y > 0. Then,

P
(
X−1 ≤ y

)
= P

(
X−1 ≤ y,X > 0

)
+ P

(
X−1 ≤ y,X < 0

)
= P

(
X >

1

y

)
+ P (X < 0)

This follows since for y > 0,
{
X−1 ≤ y,X > 0

}
=
{
X ≥ 1

y

}
and

{
X−1 ≤ y,X < 0

}
=

{X < 0}. Also, since the probability density function of X is symmetric around the origin,

P (X < 0) = 0.5. Therefore,

P
(
X−1 ≤ y

)
=

3

2
− P

(
X ≤ 1

y

)
Case 2: Let y < 0. In this case,

{
X−1 ≤ y

}
=
{
y−1 ≤ X < 0

}
. Then,

P
(
X−1 ≤ y

)
= P

(
y−1 ≤ X < 0

)
= P (X < 0)− P

(
X ≤ y−1

)
= 0.5− P

(
X ≤ y−1

)
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Therefore

P (Y ≤ y) =

{
1.5− P

(
X ≤ y−1

)
y > 0

0.5− P
(
X ≤ y−1

)
y < 0

For any y 6= 0,

fY (y) =
d

dy
P (Y ≤ y) = − d

dy
P
(
X ≤ y−1

)
= y−2fX

(
y−1
)

=
α

π(α2y2 + 1)
=

α−1

π
[
y2 + (α−1)2

]
Therefore Y = X−1 is a Cauchy random variable with parameter α−1.

(c)

F (x) =

x∫
−∞

f(u)du =

x∫
−∞

α

π(α2 + u2)
du

= lim
b−−∞

[
1

π
arctan

(u
α

)]x
b

=
1

π

[
arctan

(x
α

)
− lim
b−−∞

arctan

(
b

α

)]
=

1

π

[
arctan

(x
α

)
+
π

2

]
=

1

2
+

1

π
arctan

(x
α

)
for x ∈ <

Since F is increasing, the inverse cumulative distribution function is in fact the inverse function

of F , so

F−1(s) = α tan

[
π

(
s− 1

2

)]
, s ∈ [0, 1]

(d) Suppose U ∼ U (−1, 0). We know that if V ∼ U (0, 1), then F−1(V ) is a Cauchy random

variable with parameter α. However if U ∼ U (−1, 0) then 1 + U ∼ U (0, 1). Therefore,

g(U) = F−1(1 + U) = α tan [π (U + 0.5)] is the desired function.



9. SOLUTIONS TO CHAPTER 9

PROBLEMS

9.1 (a) The marginal probability functions f1 (x) and f2 (y) are given in the table

x

f(x, y) 0 1 2 f2 (y) = P (Y = y)

y 0 0.15 0.1 0.05 0.3

1 0.35 0.2 0.15 0.7

f1 (x) = P (X = x) 0.5 0.3 0.2 1

(b) X and Y are not independent random variables since

P (X = 1, Y = 0) = 0.1 6= P (X = 1)P (Y = 0) = (0.3) (0.3) = 0.09

(c) P (X > Y ) = f (1, 0) + f (2, 0) + f (2, 1) = 0.3

(d) Conditional probability function of X given Y = 0:

x 0 1 2 Total

P (X = x|Y = 0) 0.15
0.3 = 3

6
0.1
0.3 = 2

6
0.05
0.3 = 1

6 1

(e) Probability function of T = X + Y :

t 0 1 2 3 Total

P (T = t) 0.15 0.1 + 0.35 = 0.45 0.05 + 0.2 = 0.25 0.15 1

50
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9.2 (a)

y

p (x, y) 0 1 2 3 4 5 6 7 8 9 p1(x)

0 0.096 0 0 0 0 0 0.004 0 0 0 0.1

1 0 0.1 0 0 0 0 0 0 0 0 0.1

2 0 0 0.1 0 0 0 0 0 0 0 0.1

3 0 0 0 0.1 0 0 0 0 0 0 0.1

x 4 0 0 0 0 0.098 0 0 0.002 0 0 0.1

5 0 0 0 0 0 0.095 0 0 0 0.005 0.1

6 0.004 0 0 0 0 0 0.096 0 0 0 0.1

7 0 0 0 0 0.002 0 0 0.098 0 0 0.1

8 0 0 0 0 0 0 0 0 0.1 0 0.1

9 0 0 0 0 0 0.005 0 0 0 0.095 0.1

p2(y) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

Since P (X = 0, Y = 0) = 0.096 6= P (X = 0)P (Y = 0) = (0.1) (0.1) = 0.01, therefore X

and Y are not independent random variables.

(b)

P (X = Y ) =
∑

(x,y):
x=y

p (x, y)

= 2 (0.096) + 4 (0.1) + 2 (0.098) + 2 (0.095)

= 0.978

(c) P (number 5 is identified incorrectly|number is a five) = p (5, 9) /0.1 = 0.005/0.1 = 0.05.

9.3 (a) The joint probability function of X and Y is(
2
x

)(
1
y

)(
7

3−x−y
)(

10
3

) x = 0, 1, 2; y = 0, 1; x+ y ≤ 3

(b) The marginal probability function of X is

f1(x) =

(
2
x

)(
8

3−x
)(

10
3

) x = 0, 1, 2

The marginal probability function of Y is

f2(y) =

(
1
y

)(
9

3−y
)(

10
3

) y = 0, 1
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(c)

P (X = Y ) =
∑

(x,y):
x=y

f (x, y) =
∑

(x,y):
x=y

P (X = x, Y = y)

= P (X = 0, Y = 0) + P (X = 1, Y = 1)

=

(
2
0

)(
1
0

)(
7
3

)(
10
3

) +

(
2
1

)(
1
1

)(
7
1

)(
10
3

) =
49

120

(d)

P (X = 1|Y = 0) =
P (X = 1, Y = 0)

P (Y = 0)
=

(21)(
1
0)(

7
2)

(103 )

(10)(
9
3)

(103 )

=
1

2

9.4 (a) The event “x yellow balls on 1st 2 draws and y yellow balls on 4 draws” only happens if x

yellow balls are drawn on the first 2 draws and the remaining y − x yellow balls are drawn on

the last 2 draws. The joint probability function of X and Y is

P (X = x, Y = y)

= P (x yellow balls on 1st 2 draws and y − x yellow balls on last 2 draws)

= P (x yellow balls on 1st 2 draws)

× P (y − x yellow balls on last 2 draws given x yellow balls on 1st 2 draws)

=

(
5
x

)(
3

2−x
)(

8
2

) (
5−x
y−x
)(3−(2−x)

2−(y−x)

)(
6
2

)
=

(
5
x

)(
3

2−x
)(

5−x
y−x
)(

x+1
2+x−y

)(
8
2

)(
6
2

) for x = 0, 1, 2; y = max(1, x), x+ 1, x+ 2

(b) Since X = number of yellow balls in first 2 draws without replacement, the marginal distri-

bution of X is Hypergeometric with marginal probability function

P (X = x) =

(
5
x

)(
3

2−x
)(

8
2

) x = 0, 1, 2

Similarly since Y = number of yellow balls in all 4 draws without replacement, the marginal

probability function of Y is

P (Y = y) =

(
5
y

)(
3

4−y
)(

8
4

) y = 1, 2, 3, 4

Since

P (X = 0, Y = 3) = 0 6= P (X = 0)P (Y = 3) =

(
3
2

)(
8
2

) (53)(31)(
8
4

)
therefore X and Y are not independent random variables.
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9.5 (a)

P (X + Y > 1) =
∑

(x,y):
x+y>1

P (X = x, Y = y) = 1−
∑

(x,y):
x+y≤1

P (X = x, Y = y)

= 1− [P (X = 0, Y = 0) + P (X = 0, Y = 1) + P (X = 1, Y = 0)]

= 1− P (X = 0)P (Y = 0)− P (X = 0)P (Y = 1)

− P (X = 1)P (Y = 0)

since X and Y are independent random variables. Since X ∼ Poisson (0.1) and

Y ∼ Poisson (0.05)

P (X + Y > 1)

= 1−
(
e−0.1

) (
e−0.05

)
−
(
e−0.1

) (0.05)1 e−0.05

1!
− (0.1)1 e−0.1

1!

(
e−0.05

)
= 1− e−0.15 (1 + 0.05 + 0.1) = 1− 1.15e−0.15

(b) E (X + Y ) = E (X) + E (Y ) = 0.1 + 0.05 = 0.15 and

V ar (X + Y ) = V ar (X) + V ar (Y ) = 0.1 + 0.05 = 0.15.

9.6 (a) Note that

f (x, y) = P (X = x, Y = y) =
2x+ye−4

x!y!
=

2xe−2

x!
× 2ye−2

y!

for x = 0, 1, . . .

and y = 0, 1, . . .

We recognize 2xe−2

x! as the probability function of a Poisson (2) random variable. Therefore

X ∼ Poisson (2) and Y ∼ Poisson (2) independently.

(b) Since X ∼ Poisson (2) and Y ∼ Poisson (2) independently, therefore

X + Y ∼ Poisson (4) by Theorem 29.

9.7 First note that

P (Y = y) =
∑
all x

P (X = x, Y = y)

=
∑
all x

P (Y = y|X = x)P (X = x) by the Product Rule

=
∑
all x

f2 (y|x) f1(x)
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Since X ∼ Poisson (µ)

f1(x) =
µxe−µ

x!
for x = 0, 1, . . . .

Also, for a given number x of defective items produced, the number, Y , detected has a Binomial

distribution with n = x and p = 0.9, assuming each inspection takes place independently so

f (y|x) =

(
x

y

)
(0.9)y (0.1)x−y for y = 0, 1, . . . , x

Therefore

f(x, y) = f1(x)f2 (y|x)

=
µxe−µ

x!

x!

y!(x− y)!
(0.9)y(0.1)x−y

for
y = 0, 1, . . . , x

x = 0, 1, . . .
or

x = y, y + 1, . . .

y = 0, 1, . . .

To get f1 (x|y) we need f2(y). We have

f2(y) =
∑
all x

f(x, y) =

∞∑
x=y

µxe−µ

y!(x− y)!
(0.9)y(0.1)x−y

(x ≥ y since the number of defective items produced can’t be less than the number detected)

=
(0.9)ye−µ

y!

∞∑
x=y

µx(0.1)x−y

(x− y)!

Then

f2(y) =
(0.9µ)ye−µ

y!

∞∑
x=y

(0.1µ)x−y

(x− y)!

=
(0.9µ)ye−µ

y!

[
(0.1µ)0

0!
+

(0.1µ)1

1!
+

(0.1µ)2

2!
+ · · ·

]
=

(0.9µ)ye−µ

y!
e0.1µ by the Exponential series

=
(0.9µ)ye−0.9µ

y!
for y = 0, 1, . . .

Therefore

f1 (x|y) =
f(x, y)

f2(y)
=

µxe−µ(0.9)y(0.1)x−y

y!((x−y)!

(0.9)yµye−.9µ

y!

=
(0.1µ)x−ye−0.1µ

(x− y)!
for x = y, y + 1, y + 2, . . .
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9.8 (a) The probability that string 1 breaks exactly x times is

P (X = x) =

(
5

x

)(
1

6

)x(5

6

)5−x

that is, X ∼ Binomial(5, 1
6).

The probability string 1 breaks three or more times is

P (X ≥ 3) =
∑5

x=3P (X = x) =

(
5

x

)(
1

6

)x(5

6

)5−x
=

23

648

The probability is the same for each of strings 2, 3, . . . , 6, so the probability that any one string

breaks three or more times is

6
5∑

x=3

(
5

x

)(
1

6

)x(5

6

)5−x
=

23

108
= 0.21296

(b) Let Y = number of strings that break during a concert. Then Y ∼ Poisson (1). Suppose the

guitarist has n packages of strings and the total number of breaks is y.

If n ≥ y, then the probability that any one string breaks more than n times is 0.

If n < y < 2n, then the probability that any one string breaks more than n times is

6

y∑
x=n+1

(
y

x

)(
1

6

)x(5

6

)y−x
If 2n ≤ y, probability that any one string breaks more than n times is less than or equal to

6

y∑
x=n+1

(
y

x

)(
1

6

)x(5

6

)y−x
Let X = maximum number of breaks of any one string. Then

P (X > n) =

∞∑
y=0

P (X > n|Y = y)P (Y = y)

≤ 6e−1
∞∑

y=n+1

y∑
x=n+1

(
y

x

)(
1

6

)x(5

6

)y−x 1

y!

= 6e−1
∞∑

x=n+1

(
1

6

)x 1

x!

∞∑
y=x+1

(
5

6

)y−x 1

(y − x)!

If we replace y − x by j this becomes

6e−1
∞∑

x=n+1

(
1

6

)x 1

x!

∞∑
j=1

(
5

6

)j 1

j!
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and the last summation is the exponential series expansion of e5/6 with the first term 1 missing.

This becomes

6e−1
∞∑

x=n+1

(
1

6

)x 1

x!
(e5/6 − 1) = 6(1− e−5/6)

∞∑
x=n+1

(
1

6

)x 1

x!
e−1/6

= 6(1− e−5/6)

(
1−

n∑
x=0

(
1

6

)x 1

x!
e−1/6

)

This is approximately 3.3924 times the probability that a Poisson
(

1
6

)
random variable is greater

than n. This needs to be less than 0.01. When n = 1 we obtain 0.042 and when n = 2 we obtain

6(1− e−5/6)

(
1−

1∑
x=0

(
1

6

)x 1

x!
e−1/6

)
= 2.311 2× 10−3

so that n = 2 packages is sufficient.

9.9 (a) The conditional probability function of X given N = n is

P (X = x|N = n) =

(
n

x

)
sx(1− s)n−x

Therefore

P (X = x) =

∞∑
n=0

P (X = x|N = n)P (N = n)

=
∞∑
n=x

(
n

x

)
sx(1− s)n−xR

n
o

n!
e−R0

=
sxRxo
x!

e−R0
∞∑
n=x

[(1− s)Ro]n−x

(n− x)!

=
sxRxo
x!

e−R0e(1−s)R0

=
(sR0)x

x!
e−sR0 for x = 0, 1, 2, ...

which is the probability function of a Poisson (sR0) random variable.

(b) In order that E(X) be less than one we require

E(X) = sR0 = (1− h)R0 < 1

or 1− h < 1

R0

or h > 1− 1

R0
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This critical value 1 − 1
R0

of h is the fraction of the population that is required to have immu-

nity (through vaccinations for example) in order that the number of infected in the population

will not increase. In the special case that R0 = 2.5 we would require h > 0.60. Since X is

Poisson(SR0), V ar(X) = sR0.

(c) The expected number of new cases after one period is

x1 = x0Ros0 = 25

At the end of the first period the number of susceptibles is reduced by the number of these new

infections, that is the new value of s is

s1 = s0

(
1− x1

m

)
= 1

(
1− 25

10000

)
= 0.9975

Therefore the expected number of new infections in the second period is

x2 = x1R0s1 = 25(2.5) (0.9975) = 62.344

Again we reduce the number of susceptibles by these new infections,

s2 = s1

(
1− x2

m

)
= (0.9975)

(
1− 62.344

10000

)
= 0.99118

The expected number of new infections in the next period is

x3 = x2R0s2 = x1R
2
0s1s2 = 62.344(2.5) (0.99118) = 154.49

s3 = s2

(
1− x3

m

)
= 0.99118

(
1− 154.49

10000

)
= 0.97587

and finally

x4 = x3R0s3 = 154.49(2.5) (0.97587) = 376.91

in general

xk = x0R
k
0s0s1s2 · · · sk−1

Notice that this is an approximately exponential increase until the fraction of susceptibles are

substantially less than one. Indeed when R0 = 2.5 and s0 = x0 = 1 and m = 10000, we have a

decrease in the number of infections xk < xk−1 if and only if R0sk−1 < 1 or

sk−1 <
1

R0

that is, the fraction of susceptibles after k − 1 periods is less than or equal 1
R0

.
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9.10 Let Xi = the number of offspring of type i in a sample of size 40, i = 1, 2, 3, 4. Then

P (X1 = x1, X2 = x2, X3 = x3, X4 = x4)

=
40!

x1!x2!x3!x4!

(
3

16

)x1 ( 5

16

)x2 ( 5

16

)x3 ( 3

16

)x4
xi = 0, 1, . . . ; i = 1, 2, 3, 4 and x1 + x2 + x3 + x4 = 40

(a)

P (X1 = 10, X2 = 10, X3 = 10, X4 = 10)

=
40!

10!10!10!10!

(
3

16

)10( 5

16

)10( 5

16

)10( 3

16

)10

=
40!

(10!)4

(
3

16

)20( 5

16

)20

(b) The probability of a type 1 or type 2 offspring is 3
16 + 5

16 = 1
2 . Therefore

X1 +X2 ∼ Binomial
(
40, 1

2

)
and

P (X1 +X2 = 16) =

(
40

16

)(
1

2

)40

(c)

P (X1 = 10|X1 +X2 = 16) =
P (X1 = 10, X1 +X2 = 16)

P (X1 +X2 = 16)

=
P (X1 = 10, X2 = 6)

P (X1 +X2 = 16)

=
40!

10!6!24!

(
3
16

)10 ( 5
16

)6 ( 8
16

)24

40!
16!24!

(
8
16

)40

=

(
16

10

)(
3

8

)10(5

8

)6

9.11 Let X = number of bacteria in 50 cubic centimeters of water. Then X has a Poisson(2.5)

distribution.

P (X = x) =
(2.5)x e−2.5

x!
x = 0, 1, . . .

Then if (X0, X1, X2+) represent the number of samples with 0, 1,and 2 or more bacteria in the

five samples, having respectively probabilities e−2.5, 2.5e−2.5 and 1− 3.5e−2.5, we have

P (X0 = 1, X1 = 2, X2+ = 2) =
5!

1!2!2!

(
e−2.5

)1 (
2.5e−2.5

)2 (
1− 3.5e−2.5

)2
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9.12 Let X = the lifetime of a light bulb. Then X ∼ Exponential (1000).

(a)

P (X < 500) = 1− e−500/1000 = 1− e−0.5

P (500 < X < 1000) = e−0.5 − e−1

P (1000 < X < 1500) = e−1 − e−1.5

P (X > 1500) = e−1.5

(b) Let A be the event: 15 light bulbs last less than 500 hours, 15 light bulbs last between 500

and 1000 hours, and 10 light bulbs last between 1000 and 1500 hours.

P (A) =
50!

15!15!10!10!

(
1− e−0.5

)15 (
e−0.5 − e−1

)15 (
e−1 − e−1.5

)10 (
e−1.5

)10

(c)

P (10 or more light bulbs last longer than 1500 hours)

= 1−
9∑
y=0

(
50

y

)(
e−1.5

)y (
1− e−1.5

)50−y

9.13 From Chapter 8, Problem 15 we have P (A) = 0.06681, P (B) = 0.24173, P (C) = 0.38292,

P (D) = 0.2417, P (F ) = 0.06681.

(a)

P (5 A’s, 15 B’s, 10 C’s and 15 D’s)

=
50!

5!15!10!15!5!
(0.06681)5 (0.24173)15 (0.38292)10 (0.24173)15 (0.06681)5

(b)

P ( at least 45 students have marks above an F )

=
50∑
y=45

(
50

y

)
(0.93319)y (0.06681)50−y

(c) LetX = number of students who receiveA’s and let Y = the number of students that receive

B’s in a class of 50 students. Then the joint probability function of X and Y is

P (X = x, Y = y) =
50!

x!y! (50− x− y)!
(0.06681)x (0.24173)y (0.69146)50−x−y

x, y = 0, 1, . . . ; x+ y ≤ 50
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9.14 (a)

P (X1 = x1, . . . , X6 = x6) =
10!

x1!x2! · · ·x6!
(0.1)x1 (0.05)x2 (0.05)x3 (0.15)x4 (0.15)x5 (0.5)x6

xi = 0, 1, . . . ; x1 + x2 + · · ·+ x6 = 10

(b)

P (at least one apartment fire given 4 fire-related calls)

= P (X3 ≥ 1|X1 +X2 +X3 +X4 = 4) = 1− P (X3 = 0|X1 +X2 +X3 +X4 = 4)

= 1− P (X3 = 0, X1 +X2 +X3 +X4 = 4)

P (X1 +X2 +X3 +X4 = 4)
= 1− P (X3 = 0, X1 +X2 +X4 = 4)

P (X1 +X2 +X3 +X4 = 4)

= 1−
10!

0!4!6! (0.05)0 (0.1 + 0.05 + 0.15)4 (0.65)6

10!
4!6! (0.35)4 (0.65)6 = 1− (0.3)4

(0.35)4 = 1−
(

6

7

)4

(c) Since Xi ∼ Binomial (10, pi) then E (Xi) = 10pi. The total cost T is given by

T = 100 (5X1 + 5X2 + 7X3 + 20X4 + 4X5 + 2X6) .

The expected cost is

E (T ) = 100 [5E (X1) + 5E (X2) + 7E (X3) + 20E (X4) + 4E (X5) + 2E (X6)]

= 100 (10) [5 (0.1) + 5 (0.05) + 7 (0.05) + 20 (0.15) + 4 (0.15) + 2 (0.5)]

= 5700 dollars

9.15 (a) The joint probability function of X and Y is

P (X = x, Y = y) =
(9 + x+ y)!

x!y!9!
pxqy(1− p− q)10 x, y = 0, 1, 2, . . .

(b)

P (X = x) =

∞∑
y=0

(9 + x+ y)!

x!y!9!
pxqy(1− p− q)10

=
(9 + x)!

x!9!
px(1− p− q)10

∞∑
y=0

(9 + x+ y)!

y! (9 + x)!
qy

=

(
9 + x

x

)
px(1− p− q)10

(1− q)10+x

∞∑
y=0

(
(10 + x) + y − 1

y

)
qy (1− q)10+x

=

(
9 + x

x

)
px(1− p− q)10 (1− q)−10−x x = 0, 1, . . .
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where the sum is equal to one since

∞∑
y=0

(
k + y − 1

y

)
qy (1− q)k = 1

because it is a sum over all values for a Negative Binomial probability function.

(c) The conditional probability function of Y given X = x is

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
=

(9+x+y)!
x!y!9! pxqy(1− p− q)10

(9+x)!
x!9! p

x(1− p− q)10 (1− q)−10−x

=

(
(10 + x) +y − 1

y

)
qy(1− q)x+10 y = 0, 1, 2, . . .

which we recognize as a Negative Binomial probability function with k = 10 +x and p = 1− q.

9.16 (a)

P (X1 = 0, X2 = 2, X3 = 0, X4 = 1, X5 = 3, X6 = 1)

= P (X1 = 0)P (X2 = 2)P (X3 = 0)P (X4 = 1)P (X5 = 3)P (X6 = 1)

=

(
10e−1

0!

)(
12e−1

2!

)(
10e−1

0!

)(
11e−1

1!

)(
13e−1

3!

)(
11e−1

1!

)
if θ = 1

=
e−6

12

(b)

P (X1 = 0, X2 = 2, X3 = 0, X4 = 1, X5 = 3, X6 = 1)

= P (X1 = 0)P (X2 = 2)P (X3 = 0)P (X4 = 1)P (X5 = 3)P (X6 = 1)

=

(
θ0e−θ

0!

)(
θ2e−θ

2!

)(
θ0e−θ

0!

)(
θ1e−θ

1!

)(
θ3e−θ

3!

)(
θ1e−θ

1!

)
=
θ7e−6θ

12
for θ > 0

9.17

x

f(x, y) 0 1 2 f2 (y)

y 0 0.15 0.1 0.05 0.3

1 0.35 0.2 0.15 0.7

f1 (x) 0.5 0.3 0.2 1
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E (X) = 0 + 0.3 + 2 (0.2) = 0.7, E
(
X2
)

= 0 + 0.3 + (2)2 (0.2) = 1.1,

V ar (X) = 1.1− (0.7)2 = 0.61

E (Y ) = 0.7, E
(
Y 2
)

= 0.7, V ar (Y ) = 0.7− (0.7)2 = 0.21

E (XY ) = 0.2 + 2 (0.15) = 0.5

Cov (X,Y ) = 0.5− (0.7) (0.7) = 0.01

ρ =
0.01√

(0.61) (0.21)
= 0.02794

9.18 Note that

Cov (X,Y ) = ρ
√
V ar (X)V ar (Y )

= (−0.7)
√

(13) (34)

= (−0.7)
√

442

V ar (X − 2Y ) = V ar (X) + (−2)2 V ar (Y ) + 2 (1) (−2)Cov (X,Y )

= 13 + 4 (34)− 4 (−0.7)
√

442 = 149 + 2.8
√

442

= 207.867

9.19

Cov (X + Y,X − Y ) = V ar (X)− Cov (X,Y ) + Cov (X,Y )− V ar (Y )

= V ar (X)− V ar (Y ) = 1− 2

= −1

9.20 (a)

E (U) = E (X + Y ) = E (X) + E (Y ) = 2 (0.5) + 2 (0.5) = 2

E (V ) = E (X − Y ) = E (X)− E (Y ) = 2 (0.5)− 2 (0.5) = 0

(b)

V ar (U) = V ar (X + Y ) = V ar (X) + V ar (Y ) = 2 (0.5)2 + 2 (0.5)2 = 1

V ar (V ) = V ar (X − Y ) = V ar (X) + V ar (Y ) = 2 (0.5)2 + 2 (0.5)2 = 1

(c)

Cov (U, V ) = Cov (X + Y,X − Y ) = V ar (X)− V ar (Y ) = 0

Although Cov (U, V ) = 0, U and V are not independent since P (U = 0) 6= 0;P (V = 1) 6= 0

but P (U = 0, V = 1) = 0.
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9.21 (a) For a trinomial distribution there are three possible outcomes. Call these possible outcomes

A, B and C where P (A) = p, P (B) = q and P (C) = 1 − p − q. Since the joint distribution

of X and Y is given as

f(x, y) =
n!

x!y!(n− x− y)!
pxqy(1− p− q)n−x−y for

x = 0, 1, . . . , n

y = 0, 1, . . . , n

and x+ y ≤ n

then the random variable X counts the number of times outcome A occurs and Y counts the

number of times outcome B occurs. Therefore the random variable T = X + Y counts the

number of times outcome A or B occurs. Since P (A ∪B) = p+ q then

T = X + Y ∼ Binomial(n, p+ q).

(b) Since T = X + Y ∼ Binomial(n, p+ q) then E (T ) = n(p+ q) and

V ar (T ) = n(p+ q)(1− p− q).

(c) The variance of T can also be written as

V ar (T ) = V ar (X + Y )

= V ar (X) + V ar (Y ) + 2Cov(X,Y )

Solving for Cov(X,Y ), we obtain

Cov(X,Y ) =
1

2
[V ar (T )− V ar (X)− V ar (Y )]

Since the marginal distributions of a Multinomial distribution are Binomial we know

X ∼ Binomial(n, p) and Y ∼ Binomial(n, q) and thus V ar (X) = np (1− p) and

V ar (Y ) = nq (1− q). Therefore

Cov(X,Y ) =
1

2
[V ar (T )− V ar (X)− V ar (Y )]

=
1

2
[n(p+ q)(1− p− q)− np (1− p)− nq (1− q)]

=
1

2
(−npq − npq) = −npq

We would expect the covariance to be negative since we know that if X is large (number of A

outcomes is large) then Y must be small (number of B outcomes is small) since the total number

of trials n is fixed.

9.22 (a)

E (X)

= 0 (0.2) + 1 (0.25) + 2 (0.35) + 3 (0.1) + 4 (0.05) + 5 (0.02) + 6 (0.02) + 7 (0.01) + 8 (0.01)

= 1.76
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(b)

P (Y = y) =
8∑

x=y

(
x

y

)(
1

2

)x
f(x)

E(Y ) =

8∑
y=0

8∑
x=y

y

(
x

y

)(
1

2

)x
f(x) change the order of summation

=
8∑

x=0

f(x)

 x∑
y=0

y

(
x

y

)(
1

2

)x term in [ ] is mean of Binomial

(
x,

1

2

)
r.v.

=

8∑
x=0

f(x)

[
x

(
1

2

)]

=
1

2

8∑
x=0

xf(x)

=
1

2
E (X) =

1

2
(1.76) = 0.88

9.23

E[g (X,Y )] =
∑

all (x,y)

g (x, y) f (x, y) ≤
∑

all (x,y)

bf (x, y) = b

Similarly E[g (X,Y )] ≥ a.

9.24 The optimal weights are

w1 =
1

cσ2
1

, w2 =
1

cσ2
2

, w3 =
1

cσ2
3

where c =
1

σ2
1

+
1

σ2
2

+
1

σ2
3

and σ1 = 0.2, σ2 = 0.3, σ3 = 0.4

9.25

E
(
X̄
)

=
1

n

n∑
i=1
E (Xi) =

1

n

n∑
i=1
θ =

1

n
(nθ) = θ

and since the Xi’s are independent random variables

V ar
(
X̄
)

=

(
1

n

)2 n∑
i=1
V ar (Xi)

=

(
1

n

)2 n∑
i=1
θ =

(
1

n

)2

(nθ) =
θ

n
→ 0 as n→∞

9.26

E
(
X̄
)

=
1

n

n∑
i=1
E (Xi) =

1

n

n∑
i=1

1− θ
θ

=
1

n

[
n

(
1− θ
θ

)]
=

1− θ
θ
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and since the Xi’s are independent random variables

and V ar
(
X̄
)

=

(
1

n

)2 n∑
i=1
V ar (Xi)

=

(
1

n

)2 n∑
i=1

1− θ
θ2

=

(
1

n

)2 [
n

(
1− θ
θ2

)]
=

1

n

(
1− θ
θ2

)
→ 0 as n→∞

9.27

E
(
X̄
)

=
1

n

n∑
i=1
E (Xi) =

1

n

n∑
i=1
θ =

1

n
(nθ) = θ

and since the Xi’s are independent random variables

and V ar
(
X̄
)

=

(
1

n

)2 n∑
i=1
V ar (Xi)

=

(
1

n

)2 n∑
i=1
θ2 =

(
1

n

)2 (
nθ2
)

=
θ2

n
→ 0 as n→∞

9.28 (a) E
(
X2
i

)
= V ar (Xi) + [E (Xi)]

2 = σ2 + µ2.

(b)

E(X̄) = E

(
1

n

n∑
i=1
Xi

)
=

1

n

n∑
i=1
E (Xi) =

1

n

n∑
i=1
µ =

1

n
(nµ) = µ

Since the Xi’s are independent random variables

V ar(X̄) = V ar

(
1

n

n∑
i=1
Xi

)
=

(
1

n

)2 n∑
i=1
V ar (Xi) =

(
1

n

)2 n∑
i=1
σ2

=

(
1

n

)2 (
nσ2

)
=
σ2

n

E
[
(X̄)2

]
=
[
E
(
X̄
)]2

+ V ar
(
X̄
)

= µ2 +
σ2

n

(c)

E
(
S2
)

=
1

n− 1

{
n∑
i=1
E
(
X2
i

)
− nE

[(
X̄
)2]}

=
1

n− 1

[
n∑
i=1

(
µ2 + σ2

)
− n

(
µ2 +

σ2

n

)]
=

1

n− 1

[
n
(
µ2 + σ2

)
− nµ2 − σ2

]
=

1

n− 1

[
(n− 1)σ2

]
= σ2
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9.29 (a) Since X ∼ G(−1.4, 1.5) and Y ∼ N(−2.1, 4) independently, then

E (X + Y ) = E (X) + E (Y ) = −1.4 + (−2.1) = −3.5

and

V ar (X + Y ) = V ar (X) + V ar (Y ) = (1.5)2 + 4 = 2.25 + 4 = 6.25 = (2.5)2

so X + Y ∼ G (−3.5, 2.5) and

P (X + Y > −6) = P

(
Z >

−6− (−3.5)

2.5

)
= P

(
Z >

−2.5

2.5

)
where Z ∼ N (0, 1)

≈ P (Z > −1) = P (Z ≤ 1) = 0.84134

(b) Since X ∼ G(−1.4, 1.5) and Y ∼ N(−2.1, 4) independently, −2X + Y ∼ N (0.7, 13) and

P (−2X + Y < 3) = P

(
Z <

3− 0.7√
13

)
≈ P (Z < 0.64) = 0.73891

(c) Since X ∼ G(−1.4, 1.5) and Y ∼ N(−2.1, 4) independently, Y − X ∼ N (−0.7, 6.25)

and

P (Y < X) = P (Y −X < 0) = P

(
Z <

0− (−0.7)

2.5

)
where Z ∼ N (0, 1)

= P

(
Z <

0.7

2.5

)
= P (Z < 0.28)

= 0.61026

9.30 (a) 1.22

(b) 17.67%

9.31 (a) Let X = amount of wine in a bottle. Then X ∼ N (1.05, 0.0004).

P (bottle contains less than 1 liter)

= P (X < 1) = P

(
Z <

1− 1.05

0.02

)
where Z ∼ N (0, 1)

= P (Z < −2.5) = 1− P (Z ≤ 2.5) = 1− 0.99379 = 0.00621

A bottle is labelled as containing 1 liter. What is the probability the bottle contains less than 1

liter?

(b) Let V = volume of a cask. Then V ∼ N (22, 0.16). Let Xi = amount of wine in the ith
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bottle, i = 1, 2, . . . , 20. Then Xi ∼ N (1.05, 0.0004), i = 1, 2, . . . , 20 independently. Therefore

T =
20∑
i=1

Xi ∼ N (20 (1.05) , 20 (0.0004)) or T ∼ N (21, 0.008).

P (contents of 20 bottle fit inside) = P (V ≥ T ) = P (V − T ≥ 0)

Since V ∼ N (22, 0.16) independently of T ∼ N (21, 0.008), V−T ∼ N (22− 21, 0.16 + 0.008)

or V − T ∼ N (1, 0.168).

Therefore

P (V − T ≥ 0) = P

(
Z ≥ 0− 1√

0.168

)
where Z ∼ N (0, 1)

≈ P (Z ≥ −2.44) = P (Z ≤ 2.44) = 0.99266

9.32 0.4134

9.33 (a) P (Z > 2.5) = 1− 0.99379 = 0.00621

(b) P
(
|Z| > 5/

√
8
)

= 0.07709987 (calculated using R)

9.34 (a) Since X̄ is a linear combination of independent Normal random variables it has a Normal

distribution.

(b)

E
(
X̄
)

=
1

n

n∑
i=1
E (Xi) =

1

n

n∑
i=1
µ =

1

n
(nµ) = µ

and since the Xi’s are independent random variables

V ar
(
X̄
)

=

(
1

n

)2 n∑
i=1
V ar (Xi) =

(
1

n

)2 n∑
i=1
σ2 =

(
1

n

)2 (
nσ2

)
=
σ2

n

(c)

P
(∣∣X̄ − µ∣∣ ≤ 1.96σ/

√
n
)

= P (|Z| ≤ 1.96) where Z ∼ N (0, 1)

= 2P (Z ≤ 1.96)− 1 = 2 (0.975)− 1 = 0.95

(d) We want P
(∣∣X̄ − µ∣∣ ≤ 1.0

)
≥ 0.95 where X̄ ∼ G (µ, 12/

√
n) or

P
(∣∣X̄ − µ∣∣ ≤ 1.0

)
= P

(∣∣X̄ − µ∣∣
12/
√
n
≤ 1.0

12/
√
n

)

= P

(
|Z| ≤

√
n

12

)
≥ 0.95 where Z ∼ N (0, 1)

Since P (|Z| ≤ 1.96) = 0.95 we want
√
n/12 ≥ 1.96 or n ≥ (1.96)2 (144) = 553.2. Therefore

n should be at least 554.
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9.35 Let T = X1 +X2 + · · ·+ E (X5) = number of adjacent pairs of unlike beads in a necklace.

Since E (X1) = E (X2) = · · · = E (X5) and

E (X1) = P (X1 = 1)

= P (Bead 1 is Pink and Bead 2 is Blue) + P (Bead 1 is Blue and Bead 2 is Pink)

=

(
2

3

)(
1

3

)
+

(
1

3

)(
2

3

)
=

4

9

therefore

E (T ) = 5

(
4

9

)
=

20

9

Now V ar (X1) = V ar (X2) = · · · = V ar (X5) and

V ar (X1) = P (X1 = 1) [1− P (X1 = 1)] =

(
4

9

)(
5

9

)
=

20

81

To find Cov (X1, X2) we note that

E (X1X2) = P (X1 = 1, X2 = 1)

= P (Bead 1 is Pink, Bead 2 is Blue, Bead 3 is Pink)

+ P (Bead 1 is Blue, Bead 2 is Pink, Bead 3 is Blue)

=

(
2

3

)(
1

3

)(
2

3

)
+

(
1

3

)(
2

3

)(
1

3

)
=

6

27
=

18

81

and therefore

Cov (X1, X2) = E (X1X2)− E (X1)E (X2) =
18

81
−
(

4

9

)(
4

9

)
=

2

81

Now Cov (X1, X2) = Cov (X2, X3) = Cov (X3, X4) = Cov (X4, X5) = Cov (X5, X1) = 2
81

and all other covariances are zero. Therefore

V ar (T ) = 5

(
20

81

)
+ 2 (5)

(
2

81

)
=

100 + 20

81
=

40

27

9.36 p3(4 + p); 4p3(1− p3) + p4(1− p4) + 8p5(1− p2)
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9.37 Let

Xi =

{
1 student answers question i correctly

0 otherwise
i = 1, 2, . . . , 100

(a) If the student guesses randomly then

P (Xi = 1) = P (student answers question i correctly)

= P (student knows the answer)

+ P (student does not know the answer but guesses correctly)

= pi + (1− pi)
(

1

5

)
=

4

5
pi +

1

5
=

1

5
(1 + 4pi) = qi, i = 1, 2, . . . , 100

Then Xi ∼ Binomial (1, qi) with

E (Xi) = qi =
1

5
(1 + 4pi)

V ar (Xi) = qi (1− qi) =
1

5
(1 + 4pi) ·

4

5
(1− pi) =

4

25
(1 + 4pi) (1− pi)

=
4

25
[(1− pi) + 4pi (1− pi)] for i = 1, 2, . . . , 100

Let S =
100∑
i=1

Xi. Then

E (S) = E

(
100∑
i=1
Xi

)
=

100∑
i=1
E (Xi) =

100∑
i=1

1

5
(1 + 4pi) =

100

5
+

4

5

100∑
i=1
pi

and

V ar (S) = V ar

(
100∑
i=1
Xi

)
=

100∑
i=1
V ar (Xi) =

4

25

100∑
i=1

[(1− pi) + 4pi (1− pi)] .

The student’s total mark is given by

T =
100∑
i=1
Xi −

(
1

4

)(
100−

100∑
i=1
Xi

)
=

5

4

100∑
i=1
Xi − 25 =

5

4
S − 25.

Therefore

E (T ) = E

(
5

4
S − 25

)
=

5

4
E (S)− 25 =

5

4

[
100

5
+

4

5

100∑
i=1
pi

]
− 25 =

100∑
i=1
pi

and

V ar (T ) = V ar

(
5

4
S − 25

)
=

25

16
V ar (S) =

25

16
· 4

25

100∑
i=1

[(1− pi) + 4pi (1− pi)]

=
100∑
i=1
pi (1− pi) +

1

4

(
100−

100∑
i=1
pi

)
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as required.

(b) If the student does not guess then Xi ∼ Binomial (1, pi) with E (Xi) = pi and

V ar (Xi) = pi (1− pi). The student’s total mark is S =
100∑
i=1

Xi with

E (S) = E

(
100∑
i=1
Xi

)
=

100∑
i=1
E (Xi) =

100∑
i=1
pi

and

V ar (S) = V ar

(
100∑
i=1
Xi

)
=

100∑
i=1
V ar (Xi) =

100∑
i=1
pi (1− pi)

as required.

(c) (i) If pi = 0.9 then V ar(T ) = 11.5 and V ar(S) = 9.

(ii) If pi = 0.5 then V ar(T ) = 37.5 and V ar(S) = 25.

9.38 (a) X = the number of keys assigned to a given list has a Binomial
(
n, 1

M

)
distribution. The

expected number of keys assigned to a given list is

E (X) = n

(
1

M

)
=

n

M

(b) Consider slot i in the hash table and let Si = 1 if the slot is empty and Si = 0 otherwise,

i = 1, 2, . . . ,M . Then

P (Si = 1) =

(
1− 1

M

)n
and

E (Si) = (1)

(
1− 1

M

)n
+ (0)

[
1−

(
1− 1

M

)n]
=

(
1− 1

M

)n
Now S = S1 + S2 + · · ·+ SM = the number of empty slots and the expected number of empty

slots is

E (S) = E (S1 + S2 + · · ·+ SM )

= E (S1) + E (S2) + · · ·+ E (Sm)

= M

(
1− 1

M

)n
(c) We first note that

number of collisions = n− number of occupied slots

and

number of occupied slots = M − number of empty slots
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so

number of collisions = n− (M − number of empty slots)

= n−M + number of empty slots

Using the result from (b) we have

E (number of collisions) = n−M + E (number of empty slots)

= n−M +M

(
1− 1

M

)n
(d) Let Xi = number of keys in the table when a total of i slots are assigned for the first time,

i = 1, 2, . . . ,M . Then T =
M∑
i=1
Xi = number of keys in the table when every slot has at least

one key for the first time. Now X1 = 1 with probability one so E (X1) = 1. X2 = the number

of keys assigned when a second slot is assigned for the first time in a sequence of Bernoulli trials

where a success is “a second slot is chosen for the first time” and P (Success) = M−1
M . Recall if

X ∼ Geometric (p) then E (X) = (1− p) /p. Therefore

E (X2) = 1 +
1− M−1

M
M−1
M

=
M−1
M + 1− M−1

M
M−1
M

=
M

M − 1

Similarly, X3 = the number of keys assigned when a third slot is assigned for the first time in

a sequence of Bernoulli trials where a success is “a third slot is chosen for the first time” and

P (Success) = M−2
M . Therefore E (X3) = M

M−2 . Continuing in this manner we find

E (T ) =
M∑
i=1
E (Xi) =

M∑
i=1

M

M − i+ 1
= M

M∑
j=1

1

j

which is the sum of the first M terms in a harmonic series which does not have a closed form.

Using the approximation
M∑
j=1

1

j
≈ lnM

we have

E (T ) = M
M∑
j=1

1

j
≈M lnM

9.39 Suppose P is N ×N and let 1 be a column vector of ones of length N . Consider the probability

vector corresponding to the discrete Uniform distribution π = 1
N 1. Then

πTP =
1

N
1TP =

1

N

(
N∑
i=1
Pi1,

N∑
i=1
Pi2, . . . ,

N∑
i=1
PiN

)
=

1

N
1T = πT

since P is doubly stochastic. Therefore π is a stationary distribution of the Markov chain.
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9.40 The transition matrix is

P =

 0 1 0
2
3 0 1

3
2
3

1
3 0


from which, solving πTP = πT and rescaling so that the sum of the probabilities is one, we

obtain πT = (0.4, 0.45, 0.15), the long run fraction of time spent in cities A,B,C respectively.

9.41 By arguments similar to those in Section 9.3, the limiting matrix has rows all identically πT

where the vector πT are the stationary probabilities satisfying πTP = πT and

P =

 0 1 0
1
6

1
2

1
3

0 2
3

1
3


The solution is πT = (0.1, 0.6, 0.3) and the limit is 0.1 0.6 0.3

0.1 0.6 0.3

0.1 0.6 0.3


9.42 If today is raining, the probability of Rain, Nice, Snow three days from now is obtainable from

the first row of the matrix P 3, that is, (0.406 0.203 0.391). The probabilities of the three states

in five days, given (1) today is raining (2) today is nice (3) today is snowing are the three rows

of the matrix P 5. In this case call rows are identical to three decimals; they are all equal the

equilibrium distribution πT = (0.400, 0.200, 0.400).

9.43 We begin this solution by describing a suitable sample space. Players A and B are dealt one card

each without replacement from a deck of 13 cards numbered 1, 2, . . . , 13. There are (13) (12) =

156 possible outcomes. Let A represent the number on player A’s card and let B represent

the number on player B’s card. The possible outcomes are the points shown in the following

diagram. The diagonal points are not included in the sample space.

Recall that before the game begins, Player A choses an integer number a between 1 and 13

and similarly Player B choses an integer number b between 1 and 13. Suppose b ≤ a, that is,

player B has chosen a number b less than or equal to the number chosen by player A. The region

[A < a,B ≥ b], which is labelled 1 in the diagram, corresponds to the event that player A has

drawn a card less than their chosen number a and player B has chosen a card greater than or

equal to their chosen number b. There are a total of (14− b) (a− 1) points in this region less

the points {(b, b), . . . , (a− 1, a− 1)} on the diagonal, so a total of (14− b) (a− 1)− (a− b) =

13a+ 2b− ab− 14 points.
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The number of points in the rectangular region [A ≥ a,B < b], which is labelled 4, is

(14− a)(b− 1).

Consider the triangular region [A ≥ a,B ≥ b, A < B] which is labelled 2. The number of points

in the region excluding the points on the diagonal is

1 + 2 + · · ·+ (13− a) =
13−a∑
i=1

i =
(13− a) (14− a)

2

To obtain the number of points in the triangular region labelled 3, we note that the number of

points in the rectangular region comprised of regions 2 and 3 is (14− a)(13− b). Therefore the

number of points in region 3 is (14− a)(13− b) minus the number of points in region 2 which is

(14− a)(13− b)− (13− a) (14− a)

2
=

(14− a)(13 + a− 2b)

2

Note that the points in the region [A < a,B < b] correspond to a draw and no player wins any

money.
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In summary

Region Number of points
Player A

winnings

Player B

winnings

2. A ≥ a,B ≥ b, A < B (13−a)(14−a)
2 −6 +6

3. A ≥ a,B ≥ b, A > B (14−a)(13+a−2b)
2 +6 −6

4. A ≥ a,B < b (14− a)(b− 1) +1 −1

1. A < a,B ≥ b 13a+ 2b− ab− 14 −1 +1

(a) If b ≤ a then the probability player B wins given that both players raise is determined by the

ratio of the number of points in region 2 to the total number of points in regions in 2 and 3, that

is,

P (player B wins|R) =
(13−a)(14−a)

2
(13−a)(14−a)

2 + (14−a)(13+a−2b)
2

=
13− a

2(13− b) if b ≤ a

Note that P (player B wins|R) ≤ 1
2 if b ≤ a.

If b ≤ a then the probability player A wins given that both players raise is

P (player A wins|R) = 1− 13− a
2 (13− b) =

a− 2b+ 13

2 (13− b) if b ≤ a

To determine the probabilities if b > a, we reverse the roles of a and b in the above discussion to

obtain

P (player B wins|R) =
b− 2a+ 13

2 (13− a)
if b > a

P (player A wins|R) =
13− b

2 (13− a)
if b > a

Therefore

P (player A wins|R)− P (player B wins|R) =

{
a−b
13−b if b ≤ a
a−b

13−a if b > a

and the expected value of player A’s winnings, given that both players raise is

6[P (player A wins|R)− P (player B wins|R)] =
6 (a− b)

13−min(a, b)

(b) To determine the answer for b = 1 we first solve the more general case where b is arbitrary

and the amount by which each player raises is r− 1 (in the given question r− 1 = 5) so that the
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total stake is r.

By counting the total number of points in the regions labeled 2 and 3, we obtain

P (R) =
1

156

[
(13− a)(14− a)

2
+

(14− a)(13 + a− 2b)

2

]
=

(14− a) (13− b)
156

Assuming any raise is by an amount r − 1 and the case a ≥ b we have

E (player A winnings)

= rP (R)[P (player A wins|R)− P (player B wins|R)] + P (A ≥ a,B < b)− P (A < a,B ≥ b)

= r

(
a− b
13− b

)
(14− a) (13− b)

156
+

(14− a)(b− 1)

156
− (13a+ 2b− ab− 14)

156

=
(a− b) (14r − ar − 12)

156

For r = 6 we obtain

E (A winnings) =
(a− b) (12− a)

26
(1)

To determine the maximum of (1) over a we solve

d

da
(a− b) (12− a) =

d

da

(
12a− a2 − 12b+ ab

)
= 12− 2a+ b = 0

and obtain

a =
b

2
+ 6

Note that if b
2 ≥ 6 or b ≥ 12, then the optimal choice of a is b. Otherwise, the optimal choice of

a is the integer closest to b
2 + 6, that is, the optimal choice is 1

2b+ 6 if b is even and either of the

two integers closest to 1
2b+ 6 if b is odd. The maximum expected winnings for player A obtains

by substituting for a in (1) which gives

max
a

E(player A winnings) =

{
1

104 (b− 12)2
if b is even

1
104 (11− b) (13− b) if b is odd

Finally, if b = 1 so that B always raises then

E (player A winnings) =
(a− 1) (12− a)

26

and

max
a

E(player A winnings) =
1

104
(11− 1) (13− 1) =

15

13

which occurs for either a = 6 or a = 7.
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(c) Based on the solution given in (b) we note that for b = 11, the optimal choice of a is the

closest to 11
2 + 6 = 11.5 which a = 11 or 12 and

max
a

E(player A winnings) =
1

104
(11− 11) (13− 11) = 0

Thus, in this case, player A has no strategy which provides a positive expected profit.

(d) Note that in order to maximize E (player A winnings) = 1
26 (a− b) (12− a), player A

wishes to choose a to be an integer close to 1
2b + 6. Provided that b ≤ 10 this always re-

turns a positive value for E (player A winnings) = 1
26 (a− b) (12− a) when a > b. However

if b = 11, the expected return to player A is always 0 when a ≥ b and < 0 otherwise. So the

(minimax) strategy is a = 11 and b = 11. This is the minimax strategy since we maximized over

a and then minimixed that result over b. For the minimax solution the expected winnings to both

players is 0.

9.44 (a) The permutation Xj+1 after j + 1 requests depends only on the permutation Xj before and

the record requested at time j + 1. Thus the new state depends only on the old state Xj (without

knowing the previous states) and the record currently requested.

(b) For example the long-run probability of the state (i, j, k) is qipj , where qi = pi
1−pi .

(c) The probability that record j is in position k is

pj for k = 1

pj(Q− qj) for k = 2

1− pj(1 +Q− qj) for k = 3

where Q =
3∑
i=1
qi. The expected cost of accessing a record in the long run is

3∑
j=1

{p2
j + 2p2

j (Q− qj) + 3pj [1− pj(1 +Q− qj)]}

Substituting p1 = 0.1, p2 = 0.3, p3 = 0.6 gives q1 = 1
9 , q2 = 3

7 , q3 = 6
4 and Q = 1

9 + 3
7 + 6

4 =

2.0397 and the expected cost is 1.7214.

(d) If they are in random order, the expected cost is 1(1
3) + 2(1

3) + 3(1
3) = 2. If they are ordered

in terms of decreasing pj , the expected cost is p2
3 + 2p2

2 + 3p2
1 = 0.57.

9.45 Let J = index of maximum. P (J = j) = 1
N , for j = 1, 2, . . . , N . Let A = “your strategy

chooses the maximum”.

A occurs only if J > k and if max{Xi; k < i < J} < max{Xi; 1 ≤ i ≤ k}. Given J = j > k,



77

the probability of this is the probability that max{Xi; 1 ≤ i < j} occurs among the first k values,

which occurs with probability is k
j−1 . Therefore,

P (A) =
∑

jP (A|J = j)P (J = j) =
∑N

j=k+1P (A|J = j)
1

N

=

N∑
j=k+1

k

j − 1

1

N
=

k

N

(
1

k
+

1

k + 1
+ . . .+

1

N − 1

)
≈ k

N
ln

(
N

k

)

Note that the value of xmaximizing x ln(1/x) is x = e−1 ≈ 0.37 so roughly, the best k isNe−1.

The probability that you select the maximum is approximately e−1 ≈ 0.37.

9.47 (a) By definition

f1 (x|y) =
d

dx
P (X ≤ x|Y = y)

and

f2 (y|x) = P (Y = y|X = x) =
f1 (x|y)P (Y = y)

f1 (x)

Note that

∞∫
−∞

f1 (x|y) dx =

∞∫
−∞

d

dx
P (X ≤ x|Y = y) dx

= lim
x→∞

P (X ≤ x|Y = y)− lim
x→∞

P (X ≤ x|Y = y) = 1− 0 = 1

Since

f2 (y|x) = P (Y = y|X = x) =
f1 (x|y)P (Y = y)

f1 (x)

we have

f1 (x|y)P (Y = y) = f2 (y|x) f1 (x)

and
∞∫
−∞

f1 (x|y)P (Y = y) dx =

∞∫
−∞

f2 (y|x) f1 (x) dx

but
∞∫
−∞

f1 (x|y)P (Y = y) dx = P (Y = y)

∞∫
−∞

f1 (x|y) dx = P (Y = y)

and therefore
∞∫
−∞

f2 (y|x) f1 (x) dx = P (Y = y) = f2 (y)

as required.
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(b) Since X ∼ U (0, 1) and P (Y = y|X = x) = f2 (y|x) =

(
n

y

)
xy (1− x)n−y therefore

f2 (y) = P (Y = y) =

∞∫
−∞

f2 (y|x) f1 (x) dx =

1∫
0

(
n

y

)
xy (1− x)n−y (1) dx

=

(
n

y

) 1∫
0

xy (1− x)n−y dx =
n!

y! (n− y)!

y! (n− y)!

(n+ 1)!
=

1

n+ 1

(c) To find the conditional probability density function of X given Y = 0 we note that

P (X ≤ x|Y = 0) = P (X ≤ x| |X| ≤ 1) =
P (X ≤ x, |X| ≤ 1)

P (|X| ≤ 1)

and

P (X ≤ x, |X| ≤ 1) =


0 if x < −1

P (−1 < X ≤ x) if |x| ≤ 1

P (|X| ≤ 1) for x > 1

=


0 if x < −1

F1 (x)− F1 (−1) if |x| ≤ 1

P (|X| ≤ 1) for x > 1

where F1 (x) = P (X ≤ x). Note also that

d

dx
P (X ≤ x, |X| ≤ 1) =


0 if x < −1

f1 (x) if |x| ≤ 1

0 for x > 1

and therefore the conditional probability density function of X given Y = 0 is

f1 (x|0) =
d

dx
P (X ≤ x|Y = 0) =


0 if x < −1
f1(x)

P (|X|≤1) if |x| ≤ 1

0 for x > 1
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PROBLEMS

10.1 (a) Since E (Xi) = 1/2 and V ar (Xi) = 1/24, E (S) = 100 (1/2) = 50 and

V ar (S) = 100 (1/24) = 25/6. Since S is the sum of independent and identically distributed

random variables then by the Central Limit Theorem S =
100∑
i=1
Xi will have approximately a

N (50, 25/6) distribution.

Therefore

P (49.0 ≤ S ≤ 50.5) ≈ P

(
49− 50√

25/6
≤ Z ≤ 50.5− 50√

25/6

)
where Z ∼ N (0, 1)

= P (−0.4899 ≤ Z ≤ 0.2449)

≈ P (Z ≤ 0.24) + P (Z ≤ 0.49)− 1

= 0.59484 + 0.68793− 1

= 0.28277

(b) If Xi ∼ U (0, 1) then E (Xi) = 1/2 and V ar (Xi) = 1/12. Then E (S) = 100 (1/2) = 50

and V ar (S) = 100 (1/12) = 25/3. Since S is the sum of independent and identically distrib-

uted random variables then by the Central Limit Theorem S =
100∑
i=1
Xi will have approximately a

N (50, 25/3) distribution.

Therefore

P (49.0 ≤ S ≤ 50.5) ≈ P

(
49.0− 50√

25/3
≤ Z ≤ 50.5− 50√

25/3

)
where Z ∼ N (0, 1)

= P (−0.3464 ≤ Z ≤ 0.1732)

≈ P (Z ≤ 0.17) + P (Z ≤ 0.35)− 1

= 0.5675 + 0.63683− 1

= 0.20433

79
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10.2 Recall that if the student does not guess

E (S) =
100∑
i=1
pi and V ar (S) =

100∑
i=1
pi (1− pi)

where

S =
100∑
i=1
Xi

is their total mark.

If the student guesses then their total mark T is

T =
100∑
i=1
Xi −

(
1

4

)(
100−

100∑
i=1
Xi

)
=

5

4

100∑
i=1
Xi − 25 =

5

4
S − 25

where

E (S) =
100

5
+

4

5

100∑
i=1
pi and V ar (S) =

4

25

100∑
i=1

[(1− pi) + 4pi (1− pi)]

(a) If pi = 0.45 and student does not guess then E (S) = 100 (0.45) = 45 and

V ar (S) = 100 (0.45) (0.55) = 24.75. Since S is the sum of independent and identically distrib-

uted random variables then by the Central Limit Theorem S =
100∑
i=1
Xi will have approximately a

N (45, 24.75) distribution. Therefore

P (S ≥ 50) ≈ P

(
Z ≥ 49.5− 45√

24.75

)
where Z ∼ N (0, 1)

= 1− P (Z ≤ 0.9045) ≈ 1− P (Z ≤ 0.90) = 1− 0.81954

= 0.18045

If pi = 0.45 and the student guesses then E (S) = 100
5 + 4

5 (100) (0.45) = 56 and

V ar (S) = 4
25 [100 (0.55) + 400 (0.45) (0.55)] = 24.64.

P (T ≥ 50) = P

(
5

4
S − 25 ≥ 50

)
= P (S ≥ 60) ≈ P

(
Z ≥ 59.5− 56√

24.64

)
where Z ∼ N (0, 1)

= 1− P (Z ≤ 0.7051) ≈ 1− P (Z ≤ 0.71) = 1− 0.76115

= 0.23885

(b) If pi = 0.55 and the student does not guess then E (S) = 100 (0.55) = 55 and

V ar (S) = 100 (0.55) (0.45) = 24.75. Since S is the sum of independent and identically distrib-

uted random variables then by the Central Limit Theorem S =
100∑
i=1
Xi will have approximately a
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N (55, 24.75) distribution. Therefore

P (S ≥ 50) ≈ P

(
Z ≥ 49.5− 55√

24.75

)
where Z ∼ N (0, 1)

= 1− P (Z ≤ −1.1055) ≈ P (Z ≤ 1.11)

= 0.86650

If pi = 0.55 and the student guesses then E (S) = 100
5 + 4

5 (100) (0.55) = 64 and

V ar (S) = 4
25 [100 (0.45) + 400 (0.55) (0.45)] = 23.04.

P (T ≥ 50) = P

(
5

4
S − 25 ≥ 50

)
= P (S ≥ 60) ≈ P

(
Z ≥ 59.5− 64√

23.04

)
where Z ∼ N (0, 1)

= 1− P (Z ≤ −0.9375) ≈ P (Z ≤ 0.94)

= 0.82639

If pi = 0.45 then the best strategy for passing is to guess and if pi = 0.55 then the best strategy

for passing is to not guess.

10.3 We to find n such that

P

(∣∣∣∣Xn − 0.16

∣∣∣∣ ≤ 0.03

)
≥ 0.95

where X ∼ Binomial (n, 0.16). By the Normal approximation to the Binomial

P

(∣∣∣∣Xn − 0.16

∣∣∣∣ ≤ 0.03

)
= P

(∣∣∣∣∣ X − 0.16n√
n (0.16) (0.84)

∣∣∣∣∣ ≤ 0.03n√
n (0.16) (0.84)

)
≈ P

(
|Z| ≤ 0.08183

√
n
)

where Z ∼ N (0, 1)

Since P (|Z| ≤ 1.96) = 0.95 then we want 0.08183
√
n ≥ 1.96 or

n ≥ (1.96/0.08183)2 = (23.95)2 = 573.6. Therefore n should be at least 574.

10.4 (a) Expected number of tests = (1) (0.98)20 + (21)
[
1− (0.98)20

]
= 7.6478

Variance of number of tests = (1)2 (0.98)20 + (21)2
[
1− (0.98)20

]
− (7.6478)2 = 88.7630

(b) For 2000 people the expected number of tests is (100) (7.6478) = 764.78, and the variance

of the number of tests is (100) (88.7630) = 8876.30, since people within pooled samples are

independent and each pooled sample is independent of each other pooled sample.

(c) Let N = number of tests for 2000 people. Now N =
100∑
i=1

Ni where Ni = number of

tests required in the ith group of 20 people. Since N is the sum of 100 independent and iden-

tically distributed random variables then by the Central Limit Theorem N has approximately a
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N (764.78, 8876.30) distribution. Since the possible values forN are n = 100, 120, 140, . . . , 2100

the continuity correction is 20/2 = 10. Therefore

P (N > 800) ≈ P

(
Z ≥ (800 + 10)− 764.78√

8876.30

)
where Z ∼ N (0, 1)

= 1− P (Z ≤ 0.48) = 1− 0.68439

= 0.31561

10.5 Since X ∼ Binomial (60, 0.8), then

E(X) = 60 (0.8) = 48 and V ar (X) = 60 (0.8) (0.2) = 9.6

Since Y ∼ Binomial (62, 0.8) , then

E (Y ) = 62 (0.8) = 49.6 and V ar (Y ) = 62 (0.8) (0.2) = 9.92

Now E (X − Y ) = 48− 49.6 = −1.6 and since X and Y are independent random variables

V ar (X − Y ) = V ar(X) + V ar(Y ) = 9.6 + 9.92 = 19.52

By the Normal approximation to the Binomial, X has approximately a N (48, 9.6) distribution

and Y has approximately a N (49.6, 9.92) distribution. Since X and Y are independent random

variables then X − Y has approximately a N (−1.6, 19.52) distribution. Therefore

P (|X − Y | ≥ 3) = 1− P (|X − Y | < 3) = 1− P (−3 < X − Y < 3)

≈ 1− P
(
−2.5− (−1.6)√

19.52
≤ Z ≤ 2.5− (−1.6)√

19.52

)
where Z ∼ N (0, 1)

= 1− P (−0.20 ≤ Z ≤ 0.93)

= 1− [P (Z ≤ 0.93)− 1 + P (Z ≤ 0.20)]

= 2− 0.82381− 0.57926

= 0.59693

10.6 (a) Let X = number of unemployed people in a sample of 10000 persons. Then

X ∼ Binomial (10000, 0.07). By the Normal approximation to the Binomial X has approxi-

mately a N (700, 651) distribution. Therefore

P (675 ≤ X ≤ 725) ≈ P

(
675− 700√

651
≤ Z ≤ 725− 700√

651

)
where Z ∼ N (0, 1)

= P (|Z| ≤ 0.98) = 2P (Z ≤ 0.98)− 1

= 2 (0.83646)− 1

= 0.67292
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Note than since n = 10000 is very large a continuity correction has not been used.

(b) We need to find n such that

P

(
0.069 ≤ X

n
≤ 0.071

)
= P

(∣∣∣∣Xn − 0.07

∣∣∣∣ ≤ 0.001

)
≥ 0.95

where X ∼ Binomial (n, 0.07). By the Normal approximation to the Binomial

P

(∣∣∣∣Xn − 0.07

∣∣∣∣ ≤ 0.001

)
= P

(∣∣∣∣∣ X − 0.07n√
n (0.07) (0.93)

∣∣∣∣∣ ≤ 0.001n√
n (0.07) (0.93)

)
≈ P

(
|Z| ≤ 0.003919

√
n
)

where Z ∼ N (0, 1)

Since P (|Z| ≤ 1.96) = 0.95 then we want 0.003919
√
n ≥ 1.96 or

n ≥ (1.96/0.003919)2 = (500.1276)2 = 250127.6. Therefore n should be at least 250, 128.

10.7 LetX = number of requests in a one minute = 60 second interval. ThenX ∼ Poisson (2× 60).

Since µ = 120 is large we can use the Normal approximation to the Poisson.

(a)

P (110 ≤ X ≤ 135) =
135∑

x=110

(120)x e−120

x!

= 0.7502 (calculated using R)

P (110 ≤ X ≤ 135) ≈ P

(
109.5− 120√

120
≤ Z ≤ 135.5− 120√

120

)
where Z ∼ N (0, 1)

= P (−0.96 ≤ Z ≤ 1.41)

= P (Z ≤ 1.41)− P (Z ≤ −0.96)

= P (Z ≤ 1.41)− [1− P (Z ≤ 0.96)]

= P (Z ≤ 1.41) + P (Z ≤ 0.96)− 1

= 0.92073 + 0.83147− 1

= 0.7522

(b)

P (X > 150) =

∞∑
x=151

(120)x e−120

x!
= 1−

150∑
x=0

(120)x e−120

x!

= 0.003552 (calculated using R)



84 10. SOLUTIONS TO CHAPTER 10 PROBLEMS

P (X > 150) ≈ P

(
Z ≥ 150.5− 120√

120

)
where Z ∼ N (0, 1)

= P (Z ≥ 2.78)

= 1− 0.99728

= 0.00272

(c) Let Xi = waiting time between requests (i− 1) and i, i = 1, 2, . . . , 600. Then Xi has an

Exponential distribution with mean 1/2 = 0.5 seconds and variance (1/2)2 = 0.25 (seconds)2.

The waiting time until the 600’th request is S = X1 + X2 + · · · + X600. Since S is the sum of

independent and identically distributed random variables then by the Central Limit Theorem S

will have approximately a N (600 (0.5) , 600 (0.25)) = N (300, 150) distribution.

P (S < (4.5) (60)) = P (S < 270)

≈ P

(
Z <

270− 300√
150

)
where Z ∼ N (0, 1)

= P (Z < −2.45) = 1− P (Z < 2.45) = 1− 0.99286

= 0.00714

Note that a continuity correction is not used since S is a continuous random variable.

10.8 (a) By the Central Limit Theorem we have

X − np√
np (1− p)

∼ N (0, 1) approximately

which implies
X
n − p√
p(1−p)
n

∼ N (0, 1) approximately

Therefore

P

(
X

n
− 1.645

√
p (1− p)

n
≤ p ≤ X

n
+ 1.645

√
p (1− p)

n

)

= P

−1.645 ≤
X
n − p√
p(1−p)
n

≤ 1.645


≈ P (−1.645 ≤ Z ≤ 1.645) where Z ∼ N (0, 1)

= 2P (Z ≤ 1.645)− 1

= 2 (0.95)− 1 = 0.9
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(b) SinceXi ∼ Poisson (µ), i = 1, 2, . . . , nwhere n is large then by the Central Limit Theorem

X̄ − µ√
µ
n

∼ N (0, 1) approximately

Therefore

P

(
X̄ − 1.96

√
µ

n
≤ µ ≤ X̄ + 1.96

√
µ

n

)

= P

−1.96 ≤ X̄ − µ√
µ
n

≤ 1.96


≈ P (−1.96 ≤ Z ≤ 1.96) where Z ∼ N (0, 1)

= 2P (Z ≤ 1.96)− 1

= 2 (0.975)− 1 = 0.95

(c) Since Xi ∼ Exponential (θ), i = 1, 2, . . . , n where n then by the Central Limit Theorem

X̄ − θ√
θ2

n

∼ N (0, 1) approximately

Therefore

P

(
X̄ − 2.576

√
θ2

n
≤ θ ≤ X̄ + 2.576

√
θ2

n

)

= P

−2.576 ≤ X̄ − θ√
θ2

n

≤ 2.576


≈ P (−2.576 ≤ Z ≤ 2.576) where Z ∼ N (0, 1)

= 2P (Z ≤ 2.576)− 1

= 2 (0.995)− 1 = 0.99

10.9 (a) If you play n times then your expected profit is

E (S) = n [(1) (0.49) + (−1) (0.51)] = −0.02n

and the variance of your profit is

V ar (S) = n
[
(1)2 (0.49) + (−1)2 (0.51)− (−0.02)2

]
= 0.9996n

Since S is the sum of independent and identically distributed random variables then, by the

Central Limit Theorem, S has approximately a N(−0.02n, 0.9996n) distribution.
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(b) If n = 20, the possible values of S are x = −20,−18, . . . ,−2, 0, 2, 18, 20 and the continuity

correction is 2/2 = 1.

P (S ≥ 0) ≈ P

(
Z ≥ (0− 1)− (−0.02) (20)√

0.9996 (20)

)
where Z ∼ N (0, 1)

= P (Z ≥ −0.13) = P (Z ≤ 0.13) = 0.55172

If n = 50, the possible values of S are x = −50,−48, . . . ,−2, 0, 2, 48, 50.

P (S ≥ 0) ≈ P

(
Z ≥ (0− 1)− (−0.02) (50)√

0.9996 (50)

)
where Z ∼ N (0, 1)

= P (Z ≥ 0) = 0.5

If n = 100, the possible values of S are x = −100,−98, . . . ,−2, 0, 2, 98, 100.

P (S ≥ 0) ≈ P

(
Z ≥ (0− 1)− (−0.02) (100)√

0.9996 (100)

)
where Z ∼ N (0, 1)

= P (Z ≥ 0.10) = 1− P (Z ≤ 0.10) = 1− 0.53983 = 0.46017

The more you play, the smaller your chance of winning.

(c) For the casino owner, Y has approximately a N(0.02n, 0.9996n) distribution. For

n = 100, 000, Y has approximately a N(2000, 99960) distribution. We want to find c such that

P (Y > c) = 0.99. Since

P (Y > c) ≈ P

(
Z >

(c+ 1)− 2000√
99960

)
= P

(
Z >

c− 1999√
99960

)
where Z ∼ N (0, 1)

and P (Z > −2.3263) = 0.99 then

c− 1999√
99960

= −2.3263 or c = 1999− (2.3263)
(√

99960
)

= 1263.506

With probability 0.99 the casino owner’s profit is at least $1263.51.

10.10 (a) Let T be the number of hearts which turn up. Then T ∼ Binomial (3, 1/6) with

E (T ) = 3 (1/6) = 1/2 and V ar (T ) = 3 (1/6) (5/6) = 5/12. The profit for one play is T − 1

with E (T − 1) = 1/2− 1 = −1/2 and V ar (T − 1) = V ar (T ) = 5/12. If you play the game

n times then your expected profit is

E (X) = n [E (T − 1)] = −n
2

and the variance of your profit is

V ar (X) = n [V ar (T − 1)] =
5n

12
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Since S is the sum of independent and identically distributed random variables then, by the

Central Limit Theorem, S has approximately a N(−n/2, 5n/12) distribution.

(b) (i) If n = 10

P (S > 0) = P

(
Z >

0 + 0.5− (−5)√
50/12

)
= P (Z > 2.69) = 1− P (Z < 2.69)

= 1− 0.99643 = 0.00357

(ii) If n = 50

P (S > 0) = P

(
Z >

0 + 0.5− (−25)√
250/12

)
= P (Z > 5.58677) ≈ 0

10.11 (a)

M (t) = E
(
etX
)

=
∞∑
x=0

etxp (1− p)x = p
∞∑
x=0

[
(1− p) et

]x
=

p

1− (1− p)et by the Geometric series for t < − ln(1− p)

=
p

1− qet where q = 1− p

(b)

M ′ (t) =
d

dt

[
p
(
1− qet

)−1
]

= p (−1)
(
1− qet

)−2 (−qet)
= pqet

(
1− qet

)−2
=

pqet

(1− qet)2

E(X) = M ′(0) =
pq

p2
=
q

p

M ′′ (t) =
d

dt

[
pqet

(
1− qet

)−2
]

= pq
[
et (−2)

(
1− qet

)−3 (−qet)+ et
(
1− qet

)−2
]

=
pqet

[
2qet +

(
1− qet

)]
(1− qet)3

E(X2) = M ′′(0) =
pq (2q + 1− q)

(1− q)3 =
pq (1 + q)

p3
=
q (1 + q)

p2

V ar (X) = E(X2)− [E(X)]2 =
q (1 + q)

p2
−
(
q

p

)2

=
q

p2
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10.12

M(t) = E
(
etX
)

=
1

b− a+ 1

b∑
x=a

ext =
eat − e(b+1)t

(1− et)(b− a+ 1)
for t 6= 0

M ′ (t) =
1

b− a+ 1

b∑
x=a

d

dt
ext =

1

b− a+ 1

b∑
x=a

xext

E(X) = M ′(0) =
1

b− a+ 1

b∑
x=a

x =
1

2 (b− a+ 1)
[b (b+ 1)− (a− 1) a]

M ′′ (t) =
1

b− a+ 1

b∑
x=a

d2

dt2
ext =

1

b− a+ 1

b∑
x=a

x2ext

E(X2) = M ′′(0) =
1

b− a+ 1

b∑
x=a

x2 =
1

6 (b− a+ 1)
[b (b+ 1) (2b+ 1)− (a− 1) a (2a− 1)]

10.13 (a) Since X only takes on values 0, 1, 2 the moment generating function of X is

M (t) = et(0)P (X = 0) + et(1)P (X = 1) + et(2)P (X = 2)

= P (X = 0) + etP (X = 1) + e2tP (X = 2)

Taking two derivatives with respect to t we have

M ′ (t) = etP (X = 1) + 2e2tP (X = 2)

M ′′ (t) = etP (X = 1) + 4e2tP (X = 2)

Since M ′ (0) = E (X) = 1 and M ′′ (0) = E
(
X2
)

= 1.5 we have

1 = E (X) = M ′ (0) = P (X = 1) + 2P (X = 2)

and

1.5 = E
(
X2
)

= M ′′ (0) = P (X = 1) + 4P (X = 2)

Solving these two equations in two unknowns gives P (X = 2) = 0.25 and P (X = 1) = 0.5

and thus P (X = 0) = 0.25. Therefore

M(t) = 0.25 + 0.5et + 0.25e2t for t ∈ <

(b)

M (3) (t) = etP (X = 1) + 8e2tP (X = 2) = et (0.5) + 8e2t (0.25)

and E
(
X3
)

= M (3) (0) = 0.5 + 2 = 2.5
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M (4) (t) = etP (X = 1) + 16e2tP (X = 2) = et (0.5) + 16e2t (0.25)

and E
(
X4
)

= M (4) (0) = 0.5 + 4 = 4.5

(c) Given the first two moments E(X) = m1 and E(X2) = m2, there is a unique solution to the

equations p0 +p1 +p2 = 1, p1 +2p2 = m1, p1 +4p2 = m2 where pi = P (X = x) , x = 1, 2, 3.

10.14 (a) Expand M(t) in a power series in powers of et, that is

M(t) =
1

3e−t − 2
=

1
3e
t

1− 2
3e
t

=
1

3
et
∞∑
i=0

(
2

3
et
)i

by the Geometric series if

∣∣∣∣23et
∣∣∣∣ < 1

=
∞∑
i=0

1

3

(
2

3

)i
et(i+1)

=
∞∑
x=1

1

3

(
2

3

)x−1

etx

Therefore

P (X = x) = coefficient of ext =
1

3

(
2

3

)x−1

for x = 1, 2, . . .

which we recognize as being the probability function of X = the total number of trials until the

first success in a sequence of Bernoulli trials with P (S) = 1
3 .

(b)

M(t) = e2(et−1) = e−2e2et

= e−2
∞∑
x=0

(
2et
)x

x!
by the Exponential series for t ∈ <

=

∞∑
x=0

e−22x

x!
etx

Therefore

P (X = x) = coefficient of ext =
2xe−2

x!
for x = 0, 1, . . .

which we recognize as being the probability function of a Poisson (2) random variable.

10.15 (a)

M (t) = E
(
etX
)

=

∞∫
0

ext
1

θ
e−x/θdx =

1

θ

∞∫
0

e−x(
1
θ
−t)dx

=
1

θ

1(
1
θ − t

) =
1

1− θt if t <
1

θ
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If t ≥ 1
θ , the integral

∞∫
0

e−x(
1
θ
−t)dx does not converge and the moment generating function does

not exist for t ≥ 1
θ .

(b)

M ′ (t) =
d

dt
(1− θt)−1 = (−1) (1− θt)−2 (−θ) = θ (1− θt)−2

E(X) = M ′(0) = θ

M ′′ (t) =
d2

dt2

[
θ (1− θt)−2

]
= θ

[
(−2) (1− θt)−3 (−θ)

]
= 2θ2 (1− θt)−3

E
(
X2
)

= M ′′ (0) = 2θ2

V ar (X) = E(X2)− [E(X)]2 = 2θ2 − (θ)2 = θ2

10.16 Recall that if X ∼ N
(
µ, σ2

)
then the moment generating function of X is MX (t) = eµt+σ

2t2/2

for t ∈ <. If Xi ∼ N (1, 2), i = 1, 2, . . . , n then the moment generating function of Xi is

Mi (t) = E
(
etXi

)
= et+t

2
for t ∈ <, i = 1, 2, . . . , n.

(a) The moment generating function of Y = −3X1 + 4 is

MY (t) = E
(
etY
)

= E
(
et(−3X1+4)

)
= e4tE

(
e(−3t)X1

)
= e4tM1 (−3t) = e4te−3t+(−3t)2

= et+9t2 for t ∈ <

which is the moment generating function of a N (1, 18) random variable. By the Uniqueness

Theorem Y ∼ N (1, 18).

(b) The moment generating function of T = X1 +X2 is

MT (t) = E
(
etT
)

= E
(
et(X1+X2)

)
= E

(
etX1

)
E
(
etX2

)
since X1 and X2 are independent random variables

=
(
et+t

2
)(

et+t
2
)

= e2t+2t2 for t ∈ <

which is the moment generating function of a N (2, 4) random variable. By the Uniqueness

Theorem, T ∼ N (2, 4).
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(c) The moment generating function of Sn = X1 +X2 + . . .+Xn is

MSn (t) = E
(
etSn

)
= E

(
et(X1+X2+...+Xn)

)
= E

(
n∏
i=1
etXi

)
=

n∏
i=1
E
(
etXi

)
since the Xi’s are independent random variables

=
n∏
i=1
Mi (t) =

n∏
i=1
et+t

2

= ent+nt
2

for t ∈ <

which is the moment generating function of a N (n, 2n) random variable. By the Uniqueness

Theorem, Sn ∼ N (n, 2n).

(d) The moment generating function of Z = (2n)−1/2 (Sn − n) is

MZ (t) = E
(
etZ
)

= E
(
et(2n)−1/2(Sn−n)

)
= et(2−1/2)n1/2E

(
et(2n)−1/2Sn

)
= et(2−1/2)n1/2MSn

(
t (2n)−1/2

)
= et(2−1/2)n1/2en(t(2n)−1/2)+n(t(2n)−1/2)

2

= et
2/2 for t ∈ <

which is the moment generating function of a N (0, 1) random variable. By the Uniqueness

Theorem, Z ∼ N (0, 1).

10.17 Since X ∼ Poisson(λ1), the moment generating function of X is

MX(t) = e−λ1+λ1et

Since Y ∼ Poisson(λ2), the moment generating function of Y is

MY (t) = e−λ2+λ2et

Since X and Y are independent random variables, the moment generating function of the sum

X + Y is the product of the moment generating functions, that is,

MX(t)MY (t) = e−λ1+λ1ete−λ2+λ2et = e−(λ1+λ2)+(λ1+λ2)et

Note that this is the moment generating function of a Poisson distribution with parameter λ1+λ2.

Therefore by the Uniqueness Theorem X + Y ∼ Poisson (λ1 + λ2).

10.18 (a) The moment generating function of X is

M (t) = E
(
etX
)

=

∞∫
0

ext
1

θ2
xe−x/θdx =

1

θ2

∞∫
0

xe−( 1θ−t)xdx =
1

(1− θt)2 if t <
1

θ
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(b) From the solution to Chapter 10, Problem 15 we have

MX(t) = MY (t) =
1

1− θt for t <
1

θ

Therefore the moment generating function of S = Z + Y is

MS(t) = E
[
et(X+Y )

]
= E(etX)E(etY ) = MX(t)MY (t) =

1

(1− θt)2 for t <
1

θ

and since this is the moment generating function of the distribution obtained in (a), S must have

the probability density function f(s) = 1
θ2
se−s/θ for s > 0.

10.19

10.20 Let Y = total change over day. Given N = n, Y has a N(0, nσ2) distribution and therefore

E
(
etY |N = n

)
= exp

(
nσ2t2

2

)
MY (t) = E

(
etY
)

=
∞∑
n=0

E[etY |N = n]P (N = n)

= e−λ
∞∑
n=0

exp

(
nσ2t2

2

)
λn

n!

= e−λ
∞∑
n=0

(eσ
2t2/2λ)n

n!

= exp(−λ+ eσ
2t2/2λ) by the Exponential series

This is not a moment generating function we have seen in this course. The mean is M ′Y (0) = 0

and the variance is M ′′Y (0) = λσ2.



11. SAMPLE TESTS

Sample Midterm 1

1. Four students were late for an exam. Their excuse was that the car they shared had a flat tire on the

way. The instructor, suspecting that they were not telling the truth, asked them each separately which

tire went flat. Assume each student will randomly pick one of the tires 1, 2, 3, or 4, independently of

each other. Find the probability of each of the following events:

(a) A = they all pick the same tire.

(b) B = they all pick a different tire.

(c) C = at least two of them pick the same tire.

(d) D = exactly one student picks tire 1 and exactly one student picks tire 3.

2. The letters of the word PROBABILITY are arranged at random to form a “word”. Find the proba-

bility of each of the following events:

(a) A = the word ends with the letter Y

(b) B = the two B’s occur side by side in the word

(c) C = the word ends with the letter Y and the two B’s occur side by side

(d) D = the word does not end with the letter Y and the B’s do not occur side by side.

93
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3. In a class of 60 students, 40% are international students. Five students are chosen at random.

(a) If the students are chosen without replacement, what is the probability none of them are interna-

tional students?

(b) If the students are chosen without replacement, what is the probability at least two of them are

international students?

(c) If the students are chosen with replacement, what is the probability none of them are international

students?

(d) If the students are chosen with replacement, what is the probability exactly one of them is an

international student?

4. (a) A and B are mutually exclusive events with P (A) = 0.6 and P (B) = 0.3. Find P (A ∩B)

and P (A ∪B).

(b) A and B are independent events with P (A) = 0.5 and P (B) = 0.1. Find P (A ∩B) and

P (A ∪B).

(c) P (A) = 0.4, P (B) = 0.6, and P (A|B) = 0.5. Find P (B|A) and P
(
B̄|A

)
.

(d) P (B) = 0.3, P (A|B) = 0.6, and P
(
A|B̄

)
= 0.2. Find P (A) and P

(
Ā
)
.

5. Students Aziz, Bo and Chun each independently write a tutorial test. The probability of passing the

test is 0.8 for Aziz, 0.6 for Bo, and 0.7 for Chun.

(a) Find the probability that at least one of them passes the test.

(b) Find the probability that exactly two of them pass the test.

(c) If exactly two of them pass the test, what is the probability it was Bo who did not pass the test?

6. In 2013, 10% of all immigrants to Canada were refugees. Forty-five percent of the refugees were

under 25 years old, and 30% of the non-refugee immigrants were under 25 years old. A person is

chosen at random from those who immigrated to Canada in 2013.

(a) What is the probability the randomly chosen person is a refugee and under 25 years old?

(b) What is the probability the randomly chosen person is a non-refugee immigrant and under 25 years

old?

(c) What is the probability the randomly chosen person is under 25 years old?

(d) If the randomly chosen person is under 25 years old, then what is the probability the person is a

refugee?
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Sample Midterm 2

1. Traffic accidents at the intersection of University Avenue and Westmount Road occur according to a

Poisson process with an average rate of 0.5 accidents per day. If no accidents occur during a week of

seven days (Sunday to Saturday), the week is declared a “Safe-Week”.

(a) Find the probability of a Safe-Week.

(b) Find the probability that in a period of 10 non-overlapping weeks there is at most 1 Safe-Week.

(c) Find the probability that there are 6 accidents during the two-week period November 1-14.

(d) Given that 6 accidents occurred during the two-week period November 1-14, find the probability

that the first week (November 1-7) was a Safe-Week.

(e) Suppose an accident has just occurred. What is the expected waiting time until the next accident?

2. Suppose the random variable X has a Geometric (p) distribution.

(a) Prove that P (X ≥ x) = (1− p)x for x = 0, 1, 2, . . ..

(b) Prove that P (X ≥ x+ y
∣∣X ≥ x) = P (X ≥ y) for all non-negative integers x and y.

(c) Prove that E (X) = (1− p) /p. Be sure to show all your work.

(d) If p is the probability of success in a sequence of Bernoulli trials then find the expected total number

of trials to obtain the first success.

3. X is a continuous random variable with cumulative distribution function

F (x) =


0 if x ≤ 0,

2x2 if 0 < x ≤ 1
2

4x− 2x2 − 1 if 1
2 < x < 1

1 if x ≥ 1

(a) Find f (x), the probability density function of X , for all x ∈ <.

(b) Find P (X ≥ 0.2).

(c) Show E (2X + 1) = 2.

(d) If V ar (X) = 1/24, then find E
(
X2
)

WITHOUT using integration.
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4. In a large population the probability a randomly chosen person has a rare disease is 0.02. An

inexpensive diagnostic test gives a false positive result (person does not have the disease but the test

says they do) with probability 0.05 and a false negative result (person has the disease but the test says

they don’t) with probability 0.01. The inexpensive test costs $10. If a person tests positive they are

given a more expensive diagnostic test that costs $100 which correctly identifies all persons with the

disease.

(a) What is the expected cost per person for this testing protocol?

(b) To reduce the number of cases being missed due to false negative results, a second test is added to

the testing protocol above as follows: If a person tests negative on the first test using the inexpensive

test then the person is tested again using the inexpensive test. If the second test is negative then no

more testing is done. If the second test is positive then the person is tested with the more expensive

test. What is the expected cost per person for this testing protocol?

5. A continuous random variable X has probability density function

f(x) = θxθ−1 for 0 < x < 1

and zero otherwise where θ > 0 is a constant.

(a) Find P (X ≤ 0.25).

(b) Find E
(
Xk
)

for k = 1, 2, . . ..

(c) Let Y = −θ lnX . Show that Y ∼ Exponential(1). Be sure to show all your work.
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6. For each of the functions in the table indicate with a X which of the statements A-M is true. For

example, statement A is true for all these functions so there is a X in each box in the column labelled

A.

A B C D E F G H I J K L M

the p.f. f (x) of

a discrete r.v.
X ∗

the c.d.f. F (x) of

a discrete r.v.
X

the p.d.f. f (x) of

a continuous r.v.
X ∗

the c.d.f. F (x) of

a continuous r.v.
X

∗ = do not use this box

A: The value of the function is always non-negative.

B: Every value of the function lies in the interval [0, 1].

C: The limit of the function as x→∞ equals 1.

D: The limit of the function as x→ −∞ equals 0.

E: The domain of the function is countable.

F: The domain of the function is <.

G: The function is non-decreasing for all x ∈ <.

H: The function is increasing for all x ∈ <.

I: The function is right-continuous for all x ∈ <.

J: The function is continuous for all x ∈ <.

K: The sum of the function over all values of x equals 1.

L: The area bounded by the graph of the curve of the function and the x−axis equals 1.

M: The derivative of the function is equal to P (X = x).
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Sample Final Exam

Part A: Circle the letter corresponding to the correct answer.

1. Three numbers are drawn at random WITH replacement from the digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
The probability that there is a repeated number among the three numbers drawn is:

A: 3×102+10
103

B: 1− 3×102

103

C: 1− 10×9×8
103

D: 10×9+10
103

E: 3×10×8
10×9×8

2. If two events A and B are independent and mutually exclusive, then:

A: this is impossible

B: A must have a probability 1

C: both A and B must have probability 1

D: both A and B must have probability 0

E: either A or B (or both) have probability 0

3. In a specific population 50% of all people are males. Five percent of the males are colour-blind,

and 0.25% of the females are colour-blind. If a randomly chosen person is colour-blind, then the

probability, to 3 decimal places, that the person is a male is:

A: 0.050

B: 0.025

C: 0.952

D: 0.026

E: None of the above
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4. Sharks normally attack swimmers at Myhammy Beach on average about one day in 200. There

have been no shark attacks in the last 400 days. The probability of this happening is approxi-

mately:

A: 1
2

B: e−1

C: 2e−2

D: e−2

E: none of the above

5. Suppose new posts on a forum occur independently at a constant rate of 3 posts per half hour.

The probability that exactly 20 non-overlapping minutes in a half-hour period contain no new

posts is:

A:
(

30
20

) (
e−0.1

)10 (
1− e−0.1

)20

B:
(

30
20

) (
e−0.1

)20 (
1− e−0.1

)10

C:
(

29
19

) (
e−0.1

)20 (
1− e−0.1

)10

D:
(

30
20

) (
e−0.1

)30

E: none of the above



100 11. SAMPLE TESTS

6. Suppose X is a non-negative random variable with E
(
X2
)

= 6 and V ar (X) = 2 then

A: E (X) = 2

B: E (X) = 4

C: E (X) = −2

D: E (X) = 6

E: there is not enough information to determine E (X).

7. A certain river floods every year. Suppose the low-water mark is set at one meter and the high-

water mark is modeled by the random variable X with cumulative distribution function:

F (x) =

{
1− 1

x2
x ≥ 1

0 x < 1

The probability that the high-water mark is greater than 3m but less than 4m is:

A: 137
144

B: 7
144

C: 16
144

D: 9
144

E: none of the above
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8. In the top half of the graph below is the probability density function of the random variable X

and in the bottom half is the probability density function of the random variable Y . Assume the

probability density function equals 0 outside the visible area of the graphs.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

x

f(x
)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

y

f(y
)

Which one of the following statements is false?

A: E (Y ) > E (X)

B: E (X) = 1

C: P (X = 1) = P (Y = 1)

D: sd (X) > sd (Y )

E: V ar (X) ≤ 1
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9. Suppose that X ∼ Uniform(1, 6) and Y ∼ Uniform(1, 20). Which one of the following

statements is true?

A: P (X > 3) < P (Y > 10)

B: P (X > 3) = P (Y > 10)

C: P (X > 3) > P (Y > 10)

D: Not enough information to determine.

10. Suppose X ∼ Exponential(2). Then P (X < 3|X > 1) is equal to:

A: 1
2e
−1

B: e−1

C: 1− e−1

D: 1− e−2

E: e−2

11. Suppose X is a random variable with V ar (X) > 0. Which one of the following statements is

true?

A: E(X2) > [E(X)]2

B: E(X2) = [E(X)]2

C: E(X2) < [E(X)]2

D: Not enough information to determine.

12. Average daily caffeine consumption is 165 mg. Ninety-nine percent of people consume less

than 380 mg. Assuming daily caffeine consumption follows a Normal distribution, the standard

deviation σ is:

A: 130.7

B: 107.5

C: 167.8

D: 92.4

E: none of the above
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13. Suppose X ∼ Poisson(2), Y ∼ Poisson(3), and that X and Y are independent. The joint

probability function of X and Y is:

A: f(x, y) = e−6 2x3y

x!y! , x = 0, 1, 2, ...; y = 0, 1, 2, ...

B: f(x, y) = e−5 5x+y

x!y! , x = 0, 1, 2, ...; y = 0, 1, 2, ...

C: f(x, y) = e−5 2x3y

x!y! , x = 0, 1, 2, ...; y = 0, 1, 2, ...

D: f(x, y) = e−6 6x+y

x!y! , x = 0, 1, 2, ...; y = 0, 1, 2, ...

E: none of the above

14. SupposeX ∼ N (−2, 1), Y ∼ N (2, 4) and Z ∼ N (0, 1) independently. LetW = −3X+Y +

2Z. Which one of the following statements is true?

A: W ∼ N (3, 9)

B: W ∼ N (8, 9)

C: W ∼ U (−4, 17)

D: W ∼ N (8, 17)

E: W ∼ N (3, 17)

15. The random variable which would be the LEAST accurately approximated using the Central

Limit Theorem is:

A: the sum on 40 fair 6-sided dice.

B: the average grade of 913 students in STAT 230.

C: the total waiting time for 5 events in a Poisson process with rate λ = 10 events per hour.

D: the number of Heads in 50 flips of a fair coin.

E: the number of events in 5 hours in a Poisson process with rate λ = 10 events per hour.

16. If X ∼ Binomial (100, 0.4) then P (X ≥ 45) is best approximated by:

A: P
(
Z ≥ 45.5−40√

24

)
where Z ∼ N (0, 1)

B: P
(
Z ≥ 44.5−40√

24

)
where Z ∼ N (0, 1)

C: P
(
Z ≥ 45−40√

24

)
where Z ∼ N (0, 1)

D: P
(
Z ≥ 46.5−40√

24

)
where Z ∼ N (0, 1)

E: none of the above
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Part B: Fill in the blank

1. For each of (a) to (j) choose the appropriate name of the distribution for the random variable

X from the following list: Discrete Uniform, Hypergeometric, Binomial, Negative Binomial,

Geometric, Poisson, Continuous Uniform, Exponential, Normal, and Multinomial:

(a) A researcher is interested in studying a rare disease among beavers in Algonquin National

Park. The researcher decides to capture and test beavers until the first beaver with the

disease is found. X = number of disease-free beavers tested by the researcher.

(b) The pointer on a circular spinner is spun. X = point on the circumference of the circle at

which the pointer stops (assume almost no friction).

(c) An instructor has n identical looking keys in the bottom of her knapsack and only one of

the keys opens the door to her office. She draws a key from her knapsack and tries to open

her office door. If the key does not work she draws another key. She continues this process

until she obtains the correct key. X = the draw on which she obtains the correct key where

the draws are numbered 1 (1st draw), 2 (2nd draw), etc.

(d) The probability of winning any prize in a weekly lottery is p. Jamie decides to purchase

one lottery ticket each week until s/he wins 3 prizes. X = number of weeks in which s/he

wins no prizes.

(e) Electrical power failures in a large Canadian city occur independently of each other through-

out the year at a uniform rate with little chance of more than one failure on a given day.

X = number of power failures in a month.

(f) In a shipment of N smartphones there are D defective smartphones. A sample of n smart-

phones are chosen at random and tested. X = number of defective smartphones in the

sample.

(g) Aziz, Bo and Chow play a game together in which Aziz wins with probability p, Bo wins

with probability q, and Chow wins with probability r (p+ q + r = 1). They play the game

n times. X = number of times Aziz or Bo wins.
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(h) Since men tend to have larger feet on average than women a very long footprint at a crime

scene might indicate the criminal is male. A criminal investigator randomly selects 100

males and measures their right foot in centimeters. X = length of right foot in centimeters

of a randomly chosen male from the 100 measured.

(i) Hits on a particular website occur independently of each other at a uniform rate throughout

the day with little chance of more than one hit in a one minute interval. X = waiting time

between consecutive hits on the website.

(j) In a very large city, the probability that a randomly chosen person supports a new bylaw

banning Christmas decorations until after Remembrance Day is equal to p. A sample of 100

people are selected at random. X = number of people in sample who support the bylaw.
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2. Here are five concepts covered in STAT 230:

A: Bernoulli trials

B: Poisson process

C: Binomial approximation to the Hypergeometric

D: Poisson approximation to the Binomial

E: Central Limit Theorem

For each of the following statements indicate with a letter A, B, C, D, or E which of the

above concepts is best associated with that statement.

(a) n random variables are independent and identically distributed with mean µ and variance

σ2.

(b) Events occur at a uniform rate over time.

(c) Trials are independent.

(d) The probability p of one of only two possible outcomes is constant on each trial.

(e) The number of random draws n made without replacement from a population of two types

of items is small relative to the size of the population.

(f) The probability of 2 or more events in a sufficiently short period of time is approximately

zero.

(g) The probability p of one of only two possible outcomes is constant and small on each trial.

(h) The number of events occurring in non-overlapping time intervals are independent.

(i) The number of random variables n in the sum or average approaches∞.

(j) The number of independent trials n is large.
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Part C: Long Answer

1. X and Y are discrete random variables with joint probability function

f (x, y) x

P (X = x, Y = y) 0 1 2

1 0.15 0.05 0.15

y 0 0.15 0.05 0.20

−1 0.10 0.00 0.15

(a) Are X and Y independent random variables? Justify your answer.

(b) Find the covariance of X and Y .

(c) Find the correlation coefficient of X and Y .

(d) Find V ar (2X − Y + 1).

(e) Tabulate the conditional probability function of X given Y = 0.

(f) Tabulate the probability function of T = X + Y .

2. The weights of full-term babies born in Ontario are Normally distributed with mean µ = 3.5 kg

and standard deviation σ = 0.5 kg.

(a) What proportion of full-term babies born in Ontario weigh more than 4.25 kg?

(b) What proportion of full-term babies born in Ontario weigh between 3.1 and 4.25 kg?

(c) What proportion of full-term babies born in Ontario have weights within one standard de-

viation of the mean?

(d) A sample of 9 babies is drawn from all full-term babies born in Ontario in 2014. Give

an expression for the probability that exactly 1 baby weighs more than 4.25 kg, exactly 5

babies weigh between 3.1 kg and 4.25 kg, and exactly 3 babies weigh less than 3.1 kg. You

do not need to evaluate the expression.

(e) A sample of 9 babies is drawn from all full-term babies born in Ontario in 2014. What is

the probability that their average weight exceeds 3.4 kg?

(f) Let X̄ = 1
n

n∑
i=1

Xi be the average weight of n babies chosen at random. Find the smallest

value of n such that P
(∣∣X̄ − 3.5

∣∣ ≤ 0.05
)
≥ 0.9.
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3. Suppose X is a continuous random variable with probability density function:

f(x) =


1
θ2
xe−x/θ x ≥ 0

0 otherwise

(a) Using the Gamma function or integration by parts show that E(Xk) = θk (k + 1)! for

k = 1, 2, . . ..

(b) Use the result given in (a) to find E (X) and V ar (X).

(c) Find the probability density function of Y =
√
X .

(d) Suppose that X1, X2, . . . , X98 are independent random variables, each having the proba-

bility density function f(x). Let X̄ =
98∑
i=1

Xi/98 denote the sample mean. Use a suitable

approximation to calculate the probability

P

(
|X̄ − 2θ|
θ/7

< 1.15

)
4. Ten friends go to an all-you-can-eat sushi restaurant and sit at one large round table. Each person

likes spicy food with probability 0.6, independently of each other. We say a “match” occurs

when two people sitting next to each other BOTH like spicy food or BOTH do not like spicy

food. Let

Xi =

{
1 if there is a “match” between person i and person i+ 1

0 otherwise

for i = 1, 2, ..., 10 where person 11 is defined to be person 1 since they are at a circular table.

(a) Find the expected value of Xi.

(b) Find the expected total number of “matches” at the table.

(c) Find the variance of Xi.

(d) Show that the covariance between X1 and X2 is exactly 0.0096.

(e) Find the variance of the total number of “matches” at the table.
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Sample Midterm 1 Solutions

1. (a) A = they all pick the same tire.

Sample space = {1111, 1122, 1234, . . . , 4444} = the set of all 44 permutations of the numbers

1, 2, 3, 4 with repeats. All outcomes are equally probable.

Since A = {1111, 2222, 3333, 4444} then

P (A) =
4

44
=

1

43
=

1

64
= 0.016

(b) B = they all pick a different tire.

B = the set of all 4! permutations of the numbers 1, 2, 3, 4 without repeats. Therefore

P (B) =
4!

44
=

3

32
= 0.094

(c) C = at least two of them pick the same tire.

Since the complement of the event ‘at least 2 of them pick the same tire’ is the event ‘they all pick

a different tire’ therefore

P (C) = 1− P (B) = 1− 4!

44
= 1− 3

32
=

29

32
= 0.906

(d) D = exactly one student picks tire 1 and exactly one student picks tire 3.

D = the set of all 4! permutations of the numbers 1234, all 4!
2!1!1! permutations of the numbers

1322, and all 4!
2!1!1! permutations of the numbers 1344

P (D) =
4! + (2) 4!

2!1!1!

44
=

24 + 24

44
=

3

16
= 0.188

109
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2. (a) A = the word ends with the letter Y

Sample space = the set of all 11!
2!2! permutations of the letters BBIIPROALTY. All outcomes are

equally probable.

There is only 1 way to place the Y. The remaining 10 letters can be arranged in 10!
2!2! ways. Therefore

P (A) =
(1) 10!

2!2!
11!
2!2!

=
1

11
= 0.091

(b) B = the two B’s occur side by side in the word

Consider BB as one letter. The number of arrangements of the letters BB IIPROALTY is 10!
2! .

Therefore

P (B) =
10!
2!
11!
2!2!

=
2

11
= 0.182

(c) C = the word ends with the letter Y and the two B’s occur side by side

There is only 1 way to place the Y and we consider BB as one letter. The number of arrangements

of BB IIPROALT is 9!
2! .

Therefore

P (C) = P (A ∩B) =
(1) 9!

2!
11!
2!2!

=
2

110
=

1

55
= 0.018

(d) D = the word does not end with the letter Y and the B’s do not occur side by side.

P (D) = P
(
A ∩B

)
= P

(
A ∪B

)
by De Morgan’s Laws

= 1− P (A ∪B)

= 1− [P (A) + P (B)− P (A ∩B)] by the Sum Rule

= 1−
[

1

11
+

2

11
− 1

55

]
=

41

55

= 0.745
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3.(a) Let Ai be the event exactly i international students are chosen, i = 0, 1, . . . , 5. Then

P (Ai) =

(
24
i

)(
36

5−i
)(

60
5

) i = 0, 1, . . . , 5

Therefore

P (none are international students) = P (A0) =

(
24
0

)(
36
5

)(
60
5

) =

(
36
5

)(
60
5

) = 0.069

(b) If the students are chosen without replacement

P (at least 2 are international students) = 1− P (A0)− P (A1)

= 1−
(

36
5

)(
60
5

) − (24
1

)(
36
4

)(
60
5

)
= 1− 0.069− 0.259

= 0.672

Alternatively

P (at least 2 are international students) = P (A2) + P (A3) + P (A4) + P (A5)

=
5∑
i=2

(
24
i

)(
36

5−i
)(

60
5

)
= 0.3608 + 0.2335 + 0.0700 + 0.0078

= 0.672

(c) If the students are chosen with replacement

P (none are international students) =
365

605
= (0.6)5 = 0.078

(d) If the students are chosen with replacement, then the probability we draw the international student

first followed by 4 non-international students is 24×364

605
= (0.4) (0.6)4

. However the international

students could also be drawn on the 2nd, 3rd, 4th, and 5th draws. Therefore

P (exactly 1 international student) = 5 (0.4) (0.6)4 = 0.259
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4. (a) Since A and B are mutually exclusive events P (A ∩B) = 0 and

P (A ∪B) = P (A) + P (B) = 0.6 + 0.3

= 0.9

(b) Since A and B are independent events P (A ∩B) = P (A)P (B) = (0.5) (0.1) = 0.05 and

P (A ∪B) = P (A) + P (B)− P (A ∩B) by the Sum Rule

= 0.5 + 0.1− 0.05

= 0.55

(c)

P (A ∩B) = P (A|B)P (B) by the Product Rule

= (0.5) (0.6) = 0.3

P (B|A) =
P (A ∩B)

P (A)
=

0.3

0.4
=

3

4
= 0.75

P
(
B̄|A

)
= 1− P (B|A) = 1− 0.75 = 0.25

(d)

P (A) = P (A ∩B) + P
(
A ∩ B̄

)
= P (A|B)P (B) + P

(
A|B̄

)
P
(
B̄
)

by the Product Rule

= (0.6) (0.3) + (0.2) (0.7) = 0.18 + 0.14

= 0.32

P
(
Ā
)

= 1− P (A) = 1− 0.32

= 0.68
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5. (a) Let A be the event Aziz passes, B be the event Bo passes, and C be the event Chun passes.

These events are independent events with P (A) = 0.8, P (B) = 0.6, and P (C) = 0.7.

P (at least 1 passes)

= 1− P (none of them pass) = 1− P
(
A ∩B ∩ C

)
= 1− P

(
A
)
P
(
B
)
P
(
C
)

since the events are independent

= 1− (0.2) (0.4) (0.3) = 1− 0.024

= 0.976

(b)

P (exactly 2 pass)

= P
(
A ∩B ∩ C

)
+ P

(
A ∩B ∩ C

)
+ P

(
A ∩B ∩ C

)
= P (A)P (B)P

(
C
)

+ P (A)P
(
B
)
P (C) + P (A)P (B)P

(
C̄
)

since the events are independent

= (0.8) (0.6) (0.3) + (0.8) (0.4) (0.7) + (0.2) (0.6) (0.7)

= 0.144 + 0.224 + 0.084

= 0.452

(c)

P (Bo did not pass the test | exactly 2 pass)

= P
(
A ∩B ∩ C | exactly 2 pass

)
=
P
(
A ∩B ∩ C ∩ exactly 2 pass

)
P (exactly 2 pass)

=
P
(
A ∩B ∩ C

)
P (exactly 2 pass)

=
0.224

0.452

= 0.496
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6. (a) Let R be the event the person is a refugee and let A be the even the person is under 25 years old.

P (person is a refugee and under 25 years old)

= P (R ∩A) = P (A|R)P (R) by the Product Rule

= (0.45) (0.1)

= 0.045

(b)

P (person is a non-refugee immigrant and under 25 years old)

= P
(
R ∩A

)
= P

(
A|R

)
P
(
R
)

by the Product Rule

= (0.3) (1− 0.1)

= 0.27

(c)

P (person is under 25 years old)

= P (A)

= P (R ∩A) + P
(
R ∩A

)
= 0.045 + 0.27

= 0.315

(d)

P (person is a refugee | person is under 25 years old)

= P (R|A)

=
P (A ∩R)

P (A)

=
0.045

0.315

= 0.143
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Sample Midterm 2 Solutions

1. (a) Accidents occur at the average rate of 0.5 accidents per day or (7) (0.5) = 3.5 accidents per

week (7 days).

P (Safe-Week) = P (0 accidents in 1 week) =
(3.5)0 e−3.5

0!
= e−3.5 = 0.030

(b) Let Y = number of Safe-Weeks in a 10 week period. Then Y ∼ Binomial
(
10, e−3.5

)
.

P (there is at most 1 Safe-Week in a 10 week period)

= P (Y ≤ 1)

=
(

10
0

) (
e−3.5

)0 (
1− e−3.5

)10
+
(

10
1

) (
e−3.5

)1 (
1− e−3.5

)9
=
(
1− e−3.5

)10
+ 10e−3.5

(
1− e−3.5

)9
= 0.965

(c) Accidents occur at the average rate of 0.5 accidents per day or (14) (0.5) = 7 accidents per two-

week period (14 days).

P (6 accidents in 2 week period) =
(7)6 e−7

6!
= 0.149

(d)

P (0 accidents the 1st week | 6 accidents in 2-week period)

=
P (0 accidents the 1st week and 6 accidents in 2-week period)

P (6 accidents in 2-week period)

=
P (0 accidents the 1st week and 6 accidents the 2nd week)

P (6 accidents in 2-week period)

=
(3.5)0e−3.5

0!
(3.5)6e−3.5

6!

(7)6e−7

6!

=
(3.5)6

(7)6 = (0.5)6

= 0.016

(e) Let Y = waiting time until the next accident. Since accidents occur at the average rate of 0.5

accidents per day, then Y ∼ Exponential
(

1
0.5

)
and E (Y ) = 1

0.5 = 2 days.
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2. (a)

P (X ≥ x) = P (X = x) + P (X = x+ 1) + P (X = x+ 2) + · · ·
= p (1− p)x + p (1− p)x+1 + p (1− p)x+2 + · · · which is a Geometric series

=
p (1− p)x

1− (1− p)
= (1− p)x for x = 0, 1, . . .

(b)

P (X ≥ x+ y
∣∣X ≥ x) =

P (X ≥ x+ yandX ≥ x)

P (X ≥ x)
=
P (X ≥ x+ y)

P (X ≥ x)

=
(1− p)x+y

(1− p)x

= (1− p)y = P (X ≥ y)

which holds for all non-negative integers x and y.

(c) By the Geometric series we have

a
∑∞

i=0r
i =

a

1− r , |r| < 1

By differentiating with respect to r we obtain

a
∑∞

i=1ir
i−1 =

a

(1− r)2 , |r| < 1

Therefore

E (X) =
∑∞

x=1xp (1− p)x = p (1− p)
∑∞

x=1x (1− p)x−1 =
p (1− p)

[1− (1− p)]2
=

1− p
p

(d) Let N = total number of trials to obtain the first success. Then N = X + 1 and

E (N) = E (X + 1) = E (X) + 1

=
1− p
p

+ 1 =
1− p+ p

p

=
1

p
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3. (a) Since

F (x) =


0 if x ≤ 0,

2x2 if 0 < x ≤ 1
2

4x− 2x2 − 1 if 1
2 < x < 1

1 if x ≥ 1

f(x) =
d

dx
F (x) =


0 if x ≤ 0, or if x ≥ 1

4x if 0 < x ≤ 1
2

4− 4x if 1
2 < x < 1

Note: F ′ (x) does not exist at x = 0, 0.5, 1 so we arbitrarily define f (0) = 0 = f (1), and

f (0.5) = 2.

0.2 0 0.2 0.4 0.6 0.8 1 1.20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

f(x)

(b)

P (X ≥ 0.2) = 1− P (X ≤ 0.2) = 1− F (0.2) = 1− 2 (0.2)2 = 1− 0.08 = 0.92

(c) By symmetry of the probability density function E (X) = 1
2 and therefore

E (2X + 1) = 2E (X) + 1 = 2

(
1

2

)
+ 1 = 2

(d)

E
(
X2
)

= V ar (X) + [E (X)]2 =
1

24
+

(
1

2

)2

=
7

24
= 0.292



118 12. SOLUTIONS TO SAMPLE TESTS

4. (a)

Expected Cost = 110 [(0.02) (0.99) + (0.98) (0.05)] + 10 [(0.02) (0.01) + (0.98) (0.95)] = 16.880

(b)

Expected Cost = 110 [(0.02) (0.99) + (0.98) (0.05)]

+ 20
[
(0.02) (0.01)2 + (0.98) (0.95)2

]
+ 120 [(0.02) (0.01) (0.99) + (0.98) (0.95) (0.05)]

= 30.867
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5. (a)

P (X ≤ 0.25) =

0.25∫
0

θxθ−1dx

= xθ|0.25
0

= (0.25)θ

(b)

E
(
Xk
)

=

1∫
0

xk · θxθ−1dx

= θ

1∫
0

xθ+k−1dx

= θ

(
1

θ + k

)(
xθ+k|10

)
=

θ

θ + k
for k = 1, 2, . . .

(c) Let F (x) = P (X ≤ x) be the cumulative distribution function for X and G (y) = P (Y ≤ y) be

the cumulative distribution function for Y = −θ lnX . For y > 0

G (y) = P (Y ≤ y)

= P (−θ lnX ≤ y)

= P
(
X ≥ e−y/θ

)
= 1− F

(
e−y/θ

)
For y > 0 the probability density function for Y is

g (y) =
d

dy

[
1− F

(
e−y/θ

)]
= −f

(
e−y/θ

) d

dy

(
e−y/θ

)
by the Chain Rule

= −θ
(
e−y/θ

)θ−1
(
−1

θ
e−y/θ

)
= e−y

For y ≤ 0, g (y) = 0. Since g (y) is the probability density function for an Exponential(1) random

variable we have shown that Y = −θ lnX ∼ Exponential(1).
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6.

A B C D E F G H I J K L M

the p.f. f (x) of

a discrete r.v.
X X ∗ X X

the c.d.f. F (x) of

a discrete r.v.
X X X X X X X

the p.d.f. f (x) of

a continuous r.v.
X ∗ X X

the c.d.f. F (x) of

a continuous r.v.
X X X X X X X X

∗ = do not use this box

A: The value of the function is always non-negative.

B: Every value of the function lies in the interval [0, 1].

C: The limit of the function as x→∞ equals 1.

D: The limit of the function as x→ −∞ equals 0.

E: The domain of the function is countable.

F: The domain of the function is <.

G: The function is non-decreasing for all x ∈ <.

H: The function is increasing for all x ∈ <.

I: The function is right-continuous for all x ∈ <.

J: The function is continuous for all x ∈ <.

K: The sum of the function over all values of x equals 1.

L: The area bounded by the graph of the curve of the function and the x−axis equals 1.

M: The derivative of the function is equal to P (X = x).
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Sample Exam Solutions

Part A:

1. C

2. E

3. C

4. D

5. B

6. A

7. B

8. D

9. C

10. C

11. A

12. D

13. C

14. D

15. C

16. B
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Part B:

1. (a) Geometric

(b) Continuous Uniform

(c) Discrete Uniform

(d) Negative Binomial

(e) Poisson

(f) Hypergeometric

(g) Binomial

(h) Normal

(i) Exponential

(j) Binomial

(a) E

(b) B

(c) A (also D and E)

(d) A

(e) C

(f) B

(g) D

(h) B

(i) E

(j) D (also E)
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Part C: Long Answer

1. X and Y are discrete random variables with joint probability function

f (x, y) x

P (X = x, Y = y) 0 1 2 P (Y = y)

1 0.15 0.05 0.15 0.35

y 0 0.15 0.05 0.20 0.40

−1 0.10 0.00 0.15 0.25

P (X = x) 0.40 0.10 0.50 1.00

(a) Since

P (X = 1, Y = −1) = 0 6= P (X = 1)P (Y = −1) = (0.1) (0.25)

therefore X and Y are not independent random variables.

(b)

E (X) = (1) (0.1) + (2) (0.5) = 1.1

E (Y ) = (1) (0.35) + (−1) (0.25) = 0.1

E (XY ) = (1) (1) (0.05) + (2) (1) (0.15) + (2) (−1) (0.15) = 0.05

Cov (X,Y ) = 0.05− (1.1) (0.1)

= −0.06

(c)

E
(
X2
)

= (1)2 (0.1) + (2)2 (0.5) = 2.1

V ar (X) = 2.1− (1.1)2 = 0.89

E
(
Y 2
)

= (1)2 (0.35) + (−1)2 (0.25) = 0.6

V ar (Y ) = 0.6− (0.1)2 = 0.59

ρ (X,Y ) =
−0.06√

(0.89) (0.59)

= −0.083
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(d)

V ar (2X − Y + 1) = V ar (2X − Y )

= (2)2 V ar (X) + (−1)2 V ar (Y ) + 2 (2) (−1)Cov (X,Y )

= (4) (0.89) + 0.59 + (−4) (−0.06)

= 3.56 + 0.59 + 0.24

= 4.39

(e)

x 0 1 2 Total

P (X = x|Y = 0) 0.15
0.40 = 0.375 0.05

0.40 = 0.125 0.20
0.40 = 0.5 1.0

(f)

t −1 0 1 2 3 Total

P (T = t) 0.10 0.15 0.35 0.25 0.15 1
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2. The weights of full-term babies born in Ontario are Normally distributed with mean µ = 3.5 kg

and standard deviation σ = 0.5 kg.

(a) Let X = weight of randomly chosen full-term baby. Then X ∼ N
(

3.5, (0.5)2
)

.

P (X > 4.25) = P

(
X − 3.5

0.5
>

4.25− 3.5

0.5

)
= P (Z > 1.5) where Z ∼ N (0, 1)

= 1− P (Z ≤ 1.5)

= 1− 0.93319

= 0.06681

= 0.067

Therefore the proportion of full-term babies born in Ontario that weigh more than 4.25 kg

is 0.067.

(b)

P (3.1 ≤ X ≤ 4.25) = P

(
3.1− 3.5

0.5
≤ X − 3.5

0.5
≤ 4.25− 3.5

0.5

)
= P (−0.8 ≤ Z ≤ 1.5) where Z ∼ N (0, 1)

= P (Z ≤ 1.5)− P (Z ≤ −0.8)

= P (Z ≤ 1.5)− [1− P (Z ≤ 0.8)]

= P (Z ≤ 1.5) + P (Z ≤ 0.8)− 1 = 0.93319 + 0.78814− 1

= 0.72133 = 0.721

Therefore the proportion of full-term babies born in Ontario that weigh between 3.1 and

4.25 kg is 0.721.

(c)

P (|X − 3.5| ≤ 0.5) = P

(∣∣∣∣X − 3.5

0.5

∣∣∣∣ ≤ 0.5

0.5

)
= P (|Z| ≤ 1) where Z ∼ N (0, 1)

= 2P (Z ≤ 1)− 1 = 2 (0.84134)− 1

= 0.68268 = 0.683

Therefore the proportion of full-term babies born in Ontario that have weights within one

standard deviation of the mean is 0.683.
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(d)

P (exactly 1 baby weighs more than 4.25kg,

exactly 5 babies weigh between 3.1kg and 4.25kg,

and exactly 3 babies weigh less than 3.1kg)

=
9!

1!5!3!
(0.067)1 (0.721)5 (0.212)3

(e) Let Xi = weight of i’th baby, i = 1, 2, . . . , 9. Then Xi ∼ N
(

3.5, (0.5)2
)

, i = 1, 2, . . . , 9

independently and X̄ ∼ N
(

3.5, (0.5)2

9

)
or X̄ ∼ N

(
3.5,

(
0.5
3

)2)
.

P
(
X̄ > 3.4

)
= P

(
X̄ − 3.5

0.5/3

)
= P (Z > −0.6) where Z ∼ N (0, 1)

= P (Z < 0.6) = 0.72575 = 0.726

(f) Since Xi ∼ N
(

3.5, (0.5)2
)

, i = 1, 2, . . . , n independently, then X̄ ∼ N
(

3.5, (0.5)2

n

)
.

We want

0.9 ≤ P
(∣∣X̄ − 3.5

∣∣ ≤ 0.05
)

= P

(∣∣X̄ − 3.5
∣∣

0.5/
√
n
≤ 0.05

0.5/
√
n

)
= P

(
|Z| ≤ 0.1

√
n
)

where Z ∼ N (0, 1)

= 2P
(
Z ≤ 0.1

√
n
)
− 1

or

0.95 ≤ P
(
Z ≤ 0.1

√
n
)

Since

P (Z ≤ 1.6449) = 0.95

we need

0.1
√
n ≥ 1.6449 or n ≥ (16.449)2 = 270.570

so the smallest value of n is 271.
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3. Suppose X is a continuous random variable with probability density function:

f(x) =


1
θ2
xe−x/θ x ≥ 0

0 otherwise

(a)

E
(
Xk
)

=

∞∫
0

xk
1

θ2
xe−x/θdx =

1

θ2

∞∫
0

xk+1e−x/θdx let y =
x

θ

=
1

θ2

∞∫
0

(θy)k+1 e−yθdy = θk
∞∫

0

yk+2−1e−ydy = θkΓ (k + 2)

= θk (k + 1)!

(b) Let k = 1 to obtain

E (X) = θ1 (1 + 1)! = 2θ

Let k = 2 to obtain

E
(
X2
)

= θ2 (2 + 1)! = 6θ2

Then

V ar (X) = E
(
X2
)
− [E (X)]2 = 6θ2 − (2θ)2 = 2θ2

(c) For y > 0 the c.d.f. of Y is

G (y) = P (Y ≤ y) = P
(√

X ≤ y
)

= P
(
X ≤ y2

)
= F

(
y2
)

where F (x) = P (X ≤ x) is the cumulative distribution function of X .

For y > 0 the p.d.f. of Y is

g (y) =
d

dy
G (y) = f

(
y2
) d
dy

(
y2
)

=
1

θ2
y2e−y

2/θ (2y)

=
2

θ2
y3e−y

2/θ

and g (y) = 0 for y ≤ 0.
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(d) Since E (Xi) = 2θ and V ar (Xi) = 2θ2 i = 1, 2, . . . , 98 then by the Central Limit

Theorem

X̄ ∼ N
(

2θ,
2θ2

98

)
approximately

or X̄ ∼ N
(

2θ,

(
θ

7

)2
)

approximately

or
X̄ − 2θ

θ/7
∼ N (0, 1) approximately

Therefore

P

(∣∣X̄ − 2θ
∣∣

θ/7
< 1.15

)
≈ P (|Z| < 1.15) where Z ∼ N (0, 1)

= 2P (Z < 1.15)− 1

= 2 (0.87493)− 1

= 0.74986 = 0.750
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4. Ten friends go to an all-you-can-eat sushi restaurant and sit at one large round table. Each person

likes spicy food with probability 0.6, independently of each other. We say a “match” occurs

when two people sitting next to each other BOTH like spicy food or BOTH do not like spicy

food. Let

Xi =

{
1 if there is a “match” between person i and person i+ 1

0 otherwise

for i = 1, 2, ..., 10 where person 11 is defined to be person 1 since they are at a circular table.

(a) Let Fi be the event a person likes spicy food and F̄i be the event a person does not like

spicy food.

E (Xi) = P (Xi = 1) = P (Fi ∩ Fi+1) + P
(
F̄i ∩ F̄i+1

)
= (0.6) (0.6) + (0.4) (0.4) = 0.52

(b) Let T = X1 +X2 + · · ·+X10 = total number of matches. Then

E (T ) = E (X1) + E (X2) + · · ·+ E (X10)

= 10 (0.52) = 5.2

(c)

V ar (Xi) = P (Xi = 1) [1− P (Xi = 1)]

= (0.52) (0.48) = 0.2496 = 0.250

(d)

E (X1X2) = P (X1 = 1, X2 = 1)

= P (F1 ∩ F2 ∩ F3) + P
(
F̄1 ∩ F̄2 ∩ F̄3

)
= (0.6)3 + (0.4)3 = 0.28

Therefore

Cov (X1, X2) = E (X1X2)− E (X1)E (X2)

= 0.28− (0.52)2 = 0.0096

(e) Since Cov (X1, X2) = Cov (X2, X3) = · · · = Cov (X9, X10) = Cov (X10, X1) =

0.0096 and all other covariances are equal to zero therefore

V ar (T ) = 10 (0.2496) + 2 (10) (0.0096) = 2.688
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Summary of Discrete Distributions

Notation and

Parameters

Probability

Function

fx

Mean

EX

Variance

VarX

Moment

Generating

Function

Mt

Discrete Uniforma,b

b ≥ a
a,b integers

1
b−a1

x  a,a  1,… ,b

ab
2

b−a12−1
12

1
b−a1 ∑

xa

b

etx

t ∈ 

HypergeometricN, r,n

N  1,2,…

n  0,1,… ,N

r  0,1,… ,N

r
x  N−r

n−x 
N
n 

x  max 0,n − N  r,

… ,minr,n

nr
N

nr
N 1 −

r
N 

N−n
N−1 Not tractable

Binomialn,p

0 ≤ p ≤ 1, q  1 − p
n  1,2,…

n
x pxqn−x

x  0,1,… ,n
np npq pet  qn

t ∈ 

Bernoullip

0 ≤ p ≤ 1, q  1 − p
pxq1−x

x  0,1
p pq pet  q

t ∈ 

Negative Binomialk,p

0  p ≤ 1, q  1 − p
k  1,2,…

xk−1
x pkqx

 −k
x pk−qx

x  0,1,…

kq
p

kq

p2

p

1−qet
k

t  − lnq

Geometricp

0  p ≤ 1, q  1 − p

pqx

x  0,1,…

q
p

q

p2

p

1−qet

t  − lnq

Poisson

 ≥ 0

e−x

x!

x  0,1,…
  ee

t−1

t ∈ 

Multinomialn;p1,p2,… ,pk

0 ≤ pi ≤ 1

i  1,2,… ,k

and∑
i1

k

pi  1

fx1,x2,… ,xk 
n!

x1!x2!xk!
p1
x1p2

x2pk
xk

xi  0,1,… ,n

i  1,2,… ,k

and∑
i1

k

xi  n

EXi  npi
i  1,2,… ,k

VarXi

 npi1 − pi

i  1,2,… ,k

Mt1, t2,… , tk

p1e
t1p2e

t2

pk−1e
tk−1pk

n

ti ∈ 
i  1, 2,… ,k − 1



Summary of Continuous Distributions

Notation and

Parameters

Probability

Density

Function

fx

Mean

EX

Variance

VarX

Moment

Generating

Function

Mt

Uniforma,b

b  a

1
b−a

a ≤ x ≤ b

ab
2

b−a2

12

ebt−eat
b−at t ≠ 0

1 t  0

Exponential

  0

1
 e
−x/

x ≥ 0
 2

1
1−t

t  1


N,2  G,

 ∈ , 2  0

1
2 

e−x−
2/22

x ∈ 
 2 et

2t2/2

t ∈ 



                                                    
         This table gives values of F(x) = P(X ≤ x) for X ~ N(0,1) and x ≥ 0 

 

x  0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09 

0.0  0.50000  0.50399  0.50798  0.51197  0.51595  0.51994  0.52392  0.52790  0.53188  0.53586 

0.1  0.53983  0.54380  0.54776  0.55172  0.55567  0.55962  0.56356  0.56749  0.57142  0.57535 

0.2  0.57926  0.58317  0.58706  0.59095  0.59483  0.59871  0.60257  0.60642  0.61026  0.61409 

0.3  0.61791  0.62172  0.62552  0.62930  0.63307  0.63683  0.64058  0.64431  0.64803  0.65173 

0.4  0.65542  0.65910  0.66276  0.66640  0.67003  0.67364  0.67724  0.68082  0.68439  0.68793 

0.5  0.69146  0.69497  0.69847  0.70194  0.70540  0.70884  0.71226  0.71566  0.71904  0.72240 

0.6  0.72575  0.72907  0.73237  0.73565  0.73891  0.74215  0.74537  0.74857  0.75175  0.75490 

0.7  0.75804  0.76115  0.76424  0.76730  0.77035  0.77337  0.77637  0.77935  0.78230  0.78524 

0.8  0.78814  0.79103  0.79389  0.79673  0.79955  0.80234  0.80511  0.80785  0.81057  0.81327 

0.9  0.81594  0.81859  0.82121  0.82381  0.82639  0.82894  0.83147  0.83398  0.83646  0.83891 

1.0  0.84134  0.84375  0.84614  0.84849  0.85083  0.85314  0.85543  0.85769  0.85993  0.86214 

1.1  0.86433  0.86650  0.86864  0.87076  0.87286  0.87493  0.87698  0.87900  0.88100  0.88298 

1.2  0.88493  0.88686  0.88877  0.89065  0.89251  0.89435  0.89617  0.89796  0.89973  0.90147 

1.3  0.90320  0.90490  0.90658  0.90824  0.90988  0.91149  0.91309  0.91466  0.91621  0.91774 

1.4  0.91924  0.92073  0.92220  0.92364  0.92507  0.92647  0.92785  0.92922  0.93056  0.93189 

1.5  0.93319  0.93448  0.93574  0.93699  0.93822  0.93943  0.94062  0.94179  0.94295  0.94408 

1.6  0.94520  0.94630  0.94738  0.94845  0.94950  0.95053  0.95154  0.95254  0.95352  0.95449 

1.7  0.95543  0.95637  0.95728  0.95818  0.95907  0.95994  0.96080  0.96164  0.96246  0.96327 

1.8  0.96407  0.96485  0.96562  0.96638  0.96712  0.96784  0.96856  0.96926  0.96995  0.97062 

1.9  0.97128  0.97193  0.97257  0.97320  0.97381  0.97441  0.97500  0.97558  0.97615  0.97670 

2.0  0.97725  0.97778  0.97831  0.97882  0.97932  0.97982  0.98030  0.98077  0.98124  0.98169 

2.1  0.98214  0.98257  0.98300  0.98341  0.98382  0.98422  0.98461  0.98500  0.98537  0.98574 

2.2  0.98610  0.98645  0.98679  0.98713  0.98745  0.98778  0.98809  0.98840  0.98870  0.98899 

2.3  0.98928  0.98956  0.98983  0.99010  0.99036  0.99061  0.99086  0.99111  0.99134  0.99158 

2.4  0.99180  0.99202  0.99224  0.99245  0.99266  0.99286  0.99305  0.99324  0.99343  0.99361 

2.5  0.99379  0.99396  0.99413  0.99430  0.99446  0.99461  0.99477  0.99492  0.99506  0.99520 

2.6  0.99534  0.99547  0.99560  0.99573  0.99585  0.99598  0.99609  0.99621  0.99632  0.99643 

2.7  0.99653  0.99664  0.99674  0.99683  0.99693  0.99702  0.99711  0.99720  0.99728  0.99736 

2.8  0.99744  0.99752  0.99760  0.99767  0.99774  0.99781  0.99788  0.99795  0.99801  0.99807 

2.9  0.99813  0.99819  0.99825  0.99831  0.99836  0.99841  0.99846  0.99851  0.99856  0.99861 

3.0  0.99865  0.99869  0.99874  0.99878  0.99882  0.99886  0.99889  0.99893  0.99896  0.99900 

3.1  0.99903  0.99906  0.99910  0.99913  0.99916  0.99918  0.99921  0.99924  0.99926  0.99929 

3.2  0.99931  0.99934  0.99936  0.99938  0.99940  0.99942  0.99944  0.99946  0.99948  0.99950 

3.3  0.99952  0.99953  0.99955  0.99957  0.99958  0.99960  0.99961  0.99962  0.99964  0.99965 

3.4  0.99966  0.99968  0.99969  0.99970  0.99971  0.99972  0.99973  0.99974  0.99975  0.99976 

3.5  0.99977  0.99978  0.99978  0.99979  0.99980  0.99981  0.99981  0.99982  0.99983  0.99983 
 
 

   N(0,1) Quantiles:     This table gives values of F-1(p) for p ≥ 0.5 
  

p  0.00  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.075  0.08  0.09  0.095 

0.5  0.0000  0.0251  0.0502  0.0753  0.1004  0.1257  0.1510  0.1764  0.1891  0.2019  0.2275  0.2404 

0.6  0.2533  0.2793  0.3055  0.3319  0.3585  0.3853  0.4125  0.4399  0.4538  0.4677  0.4959  0.5101 

0.7  0.5244  0.5534  0.5828  0.6128  0.6433  0.6745  0.7063  0.7388  0.7554  0.7722  0.8064  0.8239 

0.8  0.8416  0.8779  0.9154  0.9542  0.9945  1.0364  1.0803  1.1264  1.1503  1.1750  1.2265  1.2536 

0.9  1.2816  1.3408  1.4051  1.4758  1.5548  1.6449  1.7507  1.8808  1.9600  2.0537  2.3263  2.5758 

 

N(0,1) Cumulative 
Distribution Function  
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